Previous studies have suggested that phosphorylation of translation elongation factor 1A (eEF1A) can alter its function, and large-scale phospho-proteomic analyses in Saccharomyces cerevisiae have identified 14 eEF1A residues phosphorylated under various conditions. Here, a series of eEF1A mutations at these proposed sites were created and the effects on eEF1A activity were analyzed. The eEF1A-S53D and eEF1A-T430D phosphomimetic mutant strains were inviable, while corresponding alanine mutants survived but displayed defects in growth and protein synthesis.
View Article and Find Full Text PDFWe recently demonstrated that mammalian cells harbor nicotinamide adenine dinucleotide (NAD)-capped messenger RNAs that are hydrolyzed by the DXO deNADding enzyme. Here, we report that the Nudix protein Nudt12 is a second mammalian deNADding enzyme structurally and mechanistically distinct from DXO and targeting different RNAs. The crystal structure of mouse Nudt12 in complex with the deNADding product AMP and three Mg ions at 1.
View Article and Find Full Text PDFIn most eukaryotic organisms, translation elongation requires two highly conserved elongation factors eEF1A and eEF2. Fungal systems are unique in requiring a third factor, the eukaryotic Elongation Factor 3 (eEF3). For decades, eEF3, a ribosome-dependent ATPase, was considered "fungal-specific", however, recent bioinformatics analysis indicates it may be more widely distributed among other unicellular eukaryotes.
View Article and Find Full Text PDFProtein synthesis requires factors that are proposed to enhance discrete steps. Eukaryotic initiation factor eIF5A was initially thought to affect initiation; however, it was later shown to facilitate translation elongation at polyproline. Recent work by Schuller et al.
View Article and Find Full Text PDFEukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo.
View Article and Find Full Text PDFProtein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs.
View Article and Find Full Text PDFEukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals.
View Article and Find Full Text PDFThe evolutionarily conserved PIF1 DNA helicase family is important for the maintenance of genome stability in the yeast, Saccharomyces cerevisiae. There are two PIF1 family helicases in S. cerevisiae, Pif1p and Rrm3p that both possess 5'-->3' DNA helicase activity but maintain unique functions in telomerase regulation and semi-conservative DNA replication.
View Article and Find Full Text PDFPif1 is a 5'-to-3' DNA helicase critical to DNA replication and telomere length maintenance in the budding yeast Saccharomyces cerevisiae. ScPif1 is a negative regulator of telomeric repeat synthesis by telomerase, and recombinant ScPif1 promotes the dissociation of the telomerase RNA template from telomeric DNA in vitro. In order to dissect the role of mPif1 in mammals, we cloned and disrupted the mPif1 gene.
View Article and Find Full Text PDFThe myc proto-oncogenes encode transcriptional regulators whose inappropriate expression is correlated with a wide array of human malignancies. Up-regulation of Myc enforces growth, antagonizes cell cycle withdrawal and differentiation, and in some situations promotes apoptosis. How these phenotypes are elicited is not well understood, largely because we lack a clear picture of the biologically relevant downstream effectors.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae Pif1p DNA helicase is the prototype member of a helicase subfamily conserved from yeast to humans. S. cerevisiae has two PIF1-like genes, PIF1 itself and RRM3, that have roles in maintenance of telomeric, ribosomal, and mitochondrial DNA.
View Article and Find Full Text PDF