Publications by authors named "Maria Marta Pastina"

The variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change negatively impacts crop yields, including resilient crops like sorghum, which poses a risk to global food security.
  • A study investigated the genetic basis of sorghum's adaptation to drought through a genome-wide analysis, revealing significant markers linked to grain yield and phenology traits under varying environmental conditions.
  • Findings indicate that factors like increasing humidity and temperature affect sorghum's grain yield, showing that breeding for crop resilience is complicated by the unpredictable nature of climate change.
View Article and Find Full Text PDF

In the context of multi-environment trials (MET), genomic prediction is proposed as a tool that allows the prediction of the phenotype of single cross hybrids that were not tested in field trials. This approach saves time and costs compared to traditional breeding methods. Thus, this study aimed to evaluate the genomic prediction of single cross maize hybrids not tested in MET, grain yield and female flowering time.

View Article and Find Full Text PDF

Maximizing soil exploration through modifications of the root system is a strategy for plants to overcome phosphorus (P) deficiency. Genome-wide association with 561 tropical maize inbred lines from Embrapa and DTMA panels was undertaken for root morphology and P acquisition traits under low- and high-P concentrations, with 353,540 SNPs. P supply modified root morphology traits, biomass and P content in the global maize panel, but root length and root surface area changed differentially in Embrapa and DTMA panels.

View Article and Find Full Text PDF

For many plant and animal species, commercial products are hybrids between individuals from different genetic groups. For allogamous plant species such as maize, the breeding objective is to produce single-cross hybrid varieties from two inbred lines each selected in complementary groups. Efficient hybrid breeding requires methods that (1) quickly generate homozygous and homogeneous parental lines with high combining abilities, (2) efficiently choose among the large number of available parental lines the most promising ones, and (3) predict the performances of sets of non-phenotyped single-cross hybrids, or hybrids phenotyped in a limited number of environments, based on their relationship with another set of hybrids with known performances.

View Article and Find Full Text PDF

During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially biofuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes × Wray) were evaluated in three trials.

View Article and Find Full Text PDF

A multiparental random mating population used in sorghum breeding is amenable for the detection of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches. Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] production are widespread in the developing world.

View Article and Find Full Text PDF

Plant growth promoting bacteria (PGPB) are an efficient and sustainable alternative to mitigate biotic and abiotic stresses in maize. This work aimed to sequence the genome of two Bacillus strains (B116 and B119) and to evaluate their plant growth-promoting (PGP) potential in vitro and their capacity to trigger specific responses in different maize genotypes. Analysis of the genomic sequences revealed the presence of genes related to PGP activities.

View Article and Find Full Text PDF

Genomic selection has become a reality in plant breeding programs with the reduction in genotyping costs. Especially in maize breeding programs, it emerges as a promising tool for predicting hybrid performance. The dynamics of a commercial breeding program involve the evaluation of several traits simultaneously in a large set of target environments.

View Article and Find Full Text PDF

Sugarcane (Saccharum spp.) has a complex genome with variable ploidy and frequent aneuploidy, which hampers the understanding of phenotype and genotype relations. Despite this complexity, genome-wide association studies (GWAS) may be used to identify favorable alleles for target traits in core collections and then assist breeders in better managing crosses and selecting superior genotypes in breeding populations.

View Article and Find Full Text PDF

Background: Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study the genetic architecture of P efficiency and to explore the importance of root traits on sorghum grain yield on a tropical low-P soil.

View Article and Find Full Text PDF

The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum ( L. Moench) shows potential as a bioenergy crop.

View Article and Find Full Text PDF

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance.

View Article and Find Full Text PDF

Sweet sorghum [Sorghum bicolor (L.) Moench] is a type of cultivated sorghum characterized by the accumulation of high levels of sugar in the stems and high biomass accumulation, making this crop an important feedstock for bioenergy production. Sweet sorghum breeding programs that focus on bioenergy have two main goals: to improve quantity and quality of sugars in the juicy stem and to increase fresh biomass productivity.

View Article and Find Full Text PDF

Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is one of the most important maize foliar diseases in tropical and subtropical regions, causing significant yield losses. Despite its economic importance, genetic studies of MWS are scarce. The aim of this study was to map quantitative trait loci (QTL) associated with MWS resistance and to identify resistance gene analogs (RGA) underlying these QTL.

View Article and Find Full Text PDF

Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P.

View Article and Find Full Text PDF

Background: Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity.

View Article and Find Full Text PDF