Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters.
View Article and Find Full Text PDFDetailed global gene expression profiles have been obtained for a series of transgenic and conventionally bred wheat lines expressing additional genes encoding HMW (high molecular weight) subunits of glutenin, a group of endosperm-specific seed storage proteins known to determine dough strength and therefore bread-making quality. Differences in endosperm and leaf transcriptome profiles between untransformed and derived transgenic lines were consistently extremely small, when analysing plants containing either transgenes only, or also marker genes. Differences observed in gene expression in the endosperm between conventionally bred material were much larger in comparison to differences between transgenic and untransformed lines exhibiting the same complements of gluten subunits.
View Article and Find Full Text PDF