Zeaxanthin and lutein are xanthophyll pigments present in the human retina and particularly concentrated in its center referred to as the yellow spot (macula lutea). The fact that zeaxanthin, including its isomer -zeaxanthin, is concentrated in the central part of the retina, in contrast to lutein also present in the peripheral regions, raises questions about the possible physiological significance of such a heterogeneous distribution of macular xanthophylls. Here, we attempt to address this problem using resonance Raman spectroscopy and confocal imaging, with different laser lines selected to effectively distinguish the spectral contribution of lutein and zeaxanthin.
View Article and Find Full Text PDFThe functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reorientation of pigment molecules induced by - photoisomerization. We explore this photochemically switchable system using chromatographic analysis coupled with microimaging based on fluorescence lifetime and Raman scattering, showing it at work in both isolated human retina and model lipid membranes.
View Article and Find Full Text PDFOrange carotenoid protein (OCP) is a cyanobacterial photoactive protein which binds echinenone as a chromophore; it is involved in photoprotection of these photosynthetic organisms against intense illumination. In its resting state, OCP appears orange (OCPo), and turns into a red form (OCPr) when exposed to blue-green light. Here we have combined resonance Raman spectroscopy and molecular modeling to investigate the mechanisms underlying the electronic absorption properties of the different forms of OCP.
View Article and Find Full Text PDFIn the present paper, we provide an extended study of the vibrational signature of a butenolide carotenoid, peridinin, in various solvents by combining resonance Raman spectroscopy (RRS) with theoretical calculations. The presence of a Fermi resonance due to coupling between the lactonic C═O stretching and the overtone of the wagging of the C-H in the lactonic ring provides a spectroscopic way of differentiating between peridinins lying in different environments. This is a significant achievement, given that simultaneous presence of several peridinins (each with a peculiar photophysical role) in different environments occurs in the most important peridinin containing proteins, the peridinin-chlorophyll proteins (PCPs) and the Chl a-c2-peridinin binding proteins.
View Article and Find Full Text PDFIn recent years there has been much interest in the role that products of carotenoid breakdown--the norisoprenoids--may play in wine aroma. The basis for this interest is that norisoprenoids have very low olfactory perception thresholds and so have a high sensorial impact on wine aroma. The norisoprenoids can be formed by direct degradation of carotenoids such beta-carotene and neoxanthin or they can be stored as glycoconjugates, which can then release their volatile aglycone during fermentation via enzymatic and acid hydrolysis processes.
View Article and Find Full Text PDFCarotenoids and chlorophyll-derived compounds in grapes and Port wines were investigated by HPLC-DAD and HPLC-DAD-MS (ESP+) analysis. A total of 13 carotenoid and chlorophyll-derived compounds are formally reported in grapes, 3 are identified for the first time, pheophytins a and b and (13Z)-beta-carotene, and 3 others remain unknown. In Port wines 19 compounds with carotenoid or chlorophyll-like structures are present, 8 still unidentified.
View Article and Find Full Text PDFCarotenoids in grapes of three Port winemaking cultivars were investigated. Extracts were obtained with n-hexane/diethyl ether mixtures (0/100; 20/80; 50/50; 100/0) and analyzed by normal and reversed phase HPLC-DAD. Selection and identification of peaks were based on spectroscopic characteristics - lambda(max), (%III/II) and k' values, leading to 28 probable carotenoids.
View Article and Find Full Text PDF