In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin).
View Article and Find Full Text PDFAlthough Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators.
View Article and Find Full Text PDF-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As species include important fruit tree crops of Italy, an exhaustive investigation of genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules.
View Article and Find Full Text PDFThe root system is formed by the primary root (PR), which forms lateral roots (LRs) and, in some cases, adventitious roots (ARs), which in turn may produce their own LRs. The formation of ARs is also essential for vegetative propagation in planta and in vitro and for breeding programs. Root formation and branching is coordinated by a complex developmental network, which maximizes the plant's ability to cope with abiotic stress.
View Article and Find Full Text PDFEctopic xylary element (EXE) formation in planta is a poorly investigated process, and it is unknown if it occurs as a response to the soil pollutant Cadmium (Cd). The pericycle cells of hypocotyl give rise to EXEs under specific hormonal inputs. Cadmium triggers pericycle responses, but its role in EXE formation is unknown.
View Article and Find Full Text PDFThe heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown.
View Article and Find Full Text PDFPeroxisomes are important in plant physiological functions and stress responses. Through the production of reactive oxygen and nitrogen species (ROS and RNS), and antioxidant defense enzymes, peroxisomes control cellular redox homeostasis. Peroxin (PEX) proteins, such as PEX7 and PEX5, recognize peroxisome targeting signals (PTS1/PTS2) important for transporting proteins from cytosol to peroxisomal matrix.
View Article and Find Full Text PDFDevelopmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response.
View Article and Find Full Text PDFL. is a worldwide food-crop frequently growing in cadmium (Cd)/arsenic (As) polluted soils, with its root-system as the first target of the pollutants. Root-system development involves the establishment of optimal indole-3-acetic acid (IAA) levels, also requiring the conversion of the IAA natural precursor indole-3-butyric acid (IBA) into IAA, causing nitric oxide (NO) formation.
View Article and Find Full Text PDFIn basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem.
View Article and Find Full Text PDFBMC Plant Biol
September 2018
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs).
View Article and Find Full Text PDFInt J Mol Sci
November 2017
The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs.
View Article and Find Full Text PDFA screening strategy using micropropagation glass tubes with a gradient of distances between germinating seeds and a metal-contaminated medium was used for studying alterations in root architecture and morphology of Arabidopsis thaliana treated with cadmium (Cd) and zinc (Zn) at the concentration of 10-20μM and 100-200μM, respectively. Metal concentrations in plant shoots and roots were measured by quadrupole inductively coupled plasma mass spectrometry. After 21days from germination, all plants in the tubes were scanned at high resolution and the root systems analyzed.
View Article and Find Full Text PDFThe olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs) in the drupe during the oleogenic phase.
View Article and Find Full Text PDFAdventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers.
View Article and Find Full Text PDFCold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation.
View Article and Find Full Text PDFThe heterologous expression of AtPCS1 in tobacco plants exposed to arsenic plus cadmium enhances phytochelatin levels, root As/Cd accumulation and pollutants detoxification, but does not prevent root cyto-histological damages. High phytochelatin (PC) levels may be involved in accumulation and detoxification of both cadmium (Cd) and arsenic (As) in numerous plants. Although polluted environments are frequently characterized by As and Cd coexistence, how increased PC levels affect the adaptation of the entire plant and the response of its cells/tissues to a combined contamination by As and Cd needs investigation.
View Article and Find Full Text PDFThe heavy metal cadmium (Cd) is a widespread environmental contaminant with harmful effects on living cells. In plants, phytochelatin (PC)-dependent Cd detoxification requires that PC-Cd complexes are transported into vacuoles. Here, it is shown that Arabidopsis thaliana seedlings defective in the ABCC transporter AtABCC3 (abcc3) have an increased sensitivity to different Cd concentrations, and that seedlings overexpressing AtABCC3 (AtABCC3ox) have an increased Cd tolerance.
View Article and Find Full Text PDFArabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant.
View Article and Find Full Text PDFBackground And Aims: Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels.
View Article and Find Full Text PDFIt has been suggested that, in Arabidopsis, auxin controls the timing of anther dehiscence, possibly by preventing premature endothecium lignification. We show here that auxin content in anthers peaks before the beginning of dehiscence and decreases when endothecium lignification occurs. We show that, in the auxin-perception mutants afb1-3 and tir1 afb2 afb3, endothecium lignification and anther dehiscence occur earlier than wild-type, and the gene encoding the transcription factor MYB26, which is required for endothecium lignification, is over-expressed specifically at early stages; in agreement, MYB26 expression is reduced in naphthalene acetic acid-treated anthers, and afb1 myb26 double mutants show no endothecial lignification, suggesting that auxin acts through MYB26.
View Article and Find Full Text PDFVery few studies have provided information about the effects of cadmium (Cd) at histoanatomical and ultrastructural levels, along with potential localization of the metal in planta. In particular, from this standpoint, almost nothing is known in Daucus carota L. (carrot), a particularly important species for in vitro and in vivo functional investigations.
View Article and Find Full Text PDFPotato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques.
View Article and Find Full Text PDFPrevious studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type.
View Article and Find Full Text PDF