Publications by authors named "Maria M W Etschmann"

More than 30,000 tons of menthol are produced every year as a flavor and fragrance compound or as a medical component. So far, only extraction from plant material and chemical synthesis are possible. An alternative approach for menthol production could be a biotechnological-chemical process with ideally only two conversion steps, starting from (+)-limonene, which is a side product of the citrus processing industry.

View Article and Find Full Text PDF

Kluyveromyces marxianus is emerging as a new platform organism for the production of flavour and fragrance (F&F) compounds. This food-grade yeast has advantageous traits, such as thermotolerance and rapid growth, that make it attractive for cell factory applications. The major impediment to its development has been limited fundamental knowledge of its genetics and physiology, but this is rapidly changing.

View Article and Find Full Text PDF

A biotechnological process concept for generation and in situ separation of natural β-ionone from β-carotene is presented. The process employs carotenoid cleavage dioxygenases (CCDs), a plant-derived iron-containing nonheme enzyme family requiring only dissolved oxygen as cosubstrate and no additional cofactors. Organophilic pervaporation was found to be very well suited for continuous in situ separation of β-ionone.

View Article and Find Full Text PDF

Linalool oxides are of interest to the flavour industry because of their lavender notes. Corynespora cassiicola DSM 62475 has been identified recently as a production organism because of high stereoselectivity and promising productivities [Mirata et al. (2008) J Agric Food Chem 56(9):3287-3296].

View Article and Find Full Text PDF

Green notes are substances that characterize the aroma of freshly cut grass, cucumbers, green apples, and foliage. In plants, they are synthesized by conversion of linolenic or linoleic acid via the enzymes lipoxygenase (LOX) and hydroperoxide lyase (HPL) to short-chained aldehydes. Current processes for production of natural green notes rely on plant homogenates as enzyme sources but are limited by low enzyme concentration and low specificity.

View Article and Find Full Text PDF

An integrated bioprocess for the production of the natural rose-like aroma compounds, 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEAc), from L-phenylalanine (L-phe) with yeasts was investigated. The hydrophobicity of the products leads to product inhibition, which can be compensated by in situ product removal (ISPR). An organophilic pervaporation unit, equipped with a polyoctylmethylsiloxane (POMS) membrane, was coupled via a bypass to a bioreactor and proved to be a suitable technique for the in situ removal of high-boiling products from culture broth.

View Article and Find Full Text PDF