The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean.
View Article and Find Full Text PDFCOVID-19 has led to global population lockdowns that have had indirect effects on terrestrial and marine fauna, yet little is known on their effects on marine planktonic communities. We analysed the effect of the spring 2020 lockdown in a marine coastal area in Blanes Bay, NW Mediterranean. We compared a set of 23 oceanographic, microbial and biogeochemical variables sampled right after the strict lockdown in Spain, with data from the previous 15 years after correcting for long-term trends.
View Article and Find Full Text PDFAnthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropogenic stressor, i.e.
View Article and Find Full Text PDFThe ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus-host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML.
View Article and Find Full Text PDFProkaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on the under-sampled meso- and bathypelagic layers. We explored the potential utilization of 95 carbon sources with Biolog GN2 plates in 441 prokaryotic communities sampled from surface to bathypelagic waters (down to 4,000 m) at 111 stations distributed across the tropical and subtropical Atlantic, Indian, and Pacific oceans.
View Article and Find Full Text PDFExperiments with bacteria in culture have shown that they often display "feast and famine" strategies that allow them to respond with fast growth upon pulses in resource availability, and enter a growth-arrest state when resources are limiting. Although feast responses have been observed in natural communities upon enrichment, it is unknown whether this blooming ability is maintained after long periods of starvation, particularly in systems that are energy limited like the bathypelagic ocean. Here we combined bulk and single-cell activity measurements with 16S rRNA gene amplicon sequencing to explore the response of a bathypelagic community, that had been starved for 1.
View Article and Find Full Text PDFMicrobial taxa range from being ubiquitous and abundant across space to extremely rare and endemic, depending on their ecophysiology and on different processes acting locally or regionally. However, little is known about how cosmopolitan or rare taxa combine to constitute communities and whether environmental variations promote changes in their relative abundances. Here we identified the Spatial Abundance Distribution (SpAD) of individual prokaryotic taxa (16S rDNA-defined Operational Taxonomic Units, OTUs) across 108 globally-distributed surface ocean stations.
View Article and Find Full Text PDFIn oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S) origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A) aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint.
View Article and Find Full Text PDFThe bathypelagic ocean is one of the largest ecosystems on Earth and sustains half of the ocean's microbial activity. This microbial activity strongly relies on surface-derived particles, but there is growing evidence that the carbon released through solubilization of these particles may not be sufficient to meet the energy demands of deep ocean prokaryotes. To explore how bathypelagic prokaryotes respond to the absence of external inputs of carbon, we followed the long-term (1 year) dynamics of an enclosed community.
View Article and Find Full Text PDFDuring the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.
View Article and Find Full Text PDFTwo mesocosms experiments were conducted in winter 2010 and summer 2011 to examine how increased pCO2 and/or nutrient concentrations potentially perturbate dissolved organic matter dynamics in natural microbial assemblages. The fluorescence signals of protein- and humic-like compounds were used as a proxy for labile and non-labile material, respectively, while the evolution of bacterial populations, chlorophyll a (Chl a) and dissolved organic carbon (DOC) concentrations were used as a proxy for biological activity. For both seasons, the presence of elevated pCO2 did not cause any significant change in the DOC dynamics (p-value<0.
View Article and Find Full Text PDFMetabolic diversity of heterotrophic bacterioplankton was tracked from early winter through spring with Biolog Ecoplates under the seasonally ice covered arctic shelf in the Canadian Arctic (Franklin Bay, Beaufort Sea). Samples were taken every 6 days from December 2003 to May 2004 at the surface, the halocline where a temperature inversion occurs, and at 200 m, close to the bottom. Despite the low nutrient levels and low chlorophyll a, suggesting oligotrophy in the winter surface waters, the number of substrates used (NSU) was greater than in spring, when chlorophyll a concentrations increased.
View Article and Find Full Text PDFThe phylogenetic and functional diversity of the bacterioplankton assemblage associated with blooms of toxic Alexandrium spp. was studied in three harbours of the NW Mediterranean. Denaturing gradient gel electrophoresis and DNA sequence analysis revealed the presence of a bacterium within the Roseobacter clade related to the presence of Alexandrium cells.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2004
The results of empirical studies have revealed links between phytoplankton and bacterioplankton, such as the frequent correlation between chlorophyll a and bulk bacterial abundance and production. Nevertheless, little is known about possible links at the level of specific taxonomic groups. To investigate this issue, seawater microcosm experiments were performed in the northwestern Mediterranean Sea.
View Article and Find Full Text PDF