Zeaxanthin and lutein are xanthophyll pigments present in the human retina and particularly concentrated in its center referred to as the yellow spot (macula lutea). The fact that zeaxanthin, including its isomer -zeaxanthin, is concentrated in the central part of the retina, in contrast to lutein also present in the peripheral regions, raises questions about the possible physiological significance of such a heterogeneous distribution of macular xanthophylls. Here, we attempt to address this problem using resonance Raman spectroscopy and confocal imaging, with different laser lines selected to effectively distinguish the spectral contribution of lutein and zeaxanthin.
View Article and Find Full Text PDFThe functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reorientation of pigment molecules induced by - photoisomerization. We explore this photochemically switchable system using chromatographic analysis coupled with microimaging based on fluorescence lifetime and Raman scattering, showing it at work in both isolated human retina and model lipid membranes.
View Article and Find Full Text PDFCarotenoid-containing oil droplets in the avian retina act as cut-off filters to enhance colour discrimination. We report a confocal resonance Raman investigation of the oil droplets of the domestic chicken, Gallus gallus domesticus. We show that all carotenoids present are in a constrained conformation, implying a locus in specific lipid binding sites.
View Article and Find Full Text PDFHuman retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health-specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive.
View Article and Find Full Text PDFIn the present paper, we provide an extended study of the vibrational signature of a butenolide carotenoid, peridinin, in various solvents by combining resonance Raman spectroscopy (RRS) with theoretical calculations. The presence of a Fermi resonance due to coupling between the lactonic C═O stretching and the overtone of the wagging of the C-H in the lactonic ring provides a spectroscopic way of differentiating between peridinins lying in different environments. This is a significant achievement, given that simultaneous presence of several peridinins (each with a peculiar photophysical role) in different environments occurs in the most important peridinin containing proteins, the peridinin-chlorophyll proteins (PCPs) and the Chl a-c2-peridinin binding proteins.
View Article and Find Full Text PDFThe electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive.
View Article and Find Full Text PDFPredicting the complete electronic structure of carotenoid molecules remains an extremely complex problem, particularly in anisotropic media such as proteins. In this paper, we address the electronic properties of nine relatively simple carotenoids by the combined use of electronic absorption and resonance Raman spectroscopies. Linear carotenoids exhibit an excellent correlation between (i) the inverse of their conjugation chain length N, (ii) the energy of their S0 → S2 electronic transition, and (iii) the position of their ν1 Raman band (corresponding to the stretching mode of their conjugated C═C bonds).
View Article and Find Full Text PDFLight absorption by carotenoids is known to vary substantially with the shape or conformation of the pigment molecule induced by the molecular environment, but the role of interactions between carotenoid pigments and the proteins to which they are bound, and the resulting impact on organismal coloration, remain unclear. Here, we present a spectroscopic investigation of feathers from the brilliant red scarlet ibis (Eudocimus ruber, Threskiornithidae), the orange-red summer tanager (Piranga rubra, Cardinalidae) and the violet-purple feathers of the white-browed purpletuft (Iodopleura isabellae, Tityridae). Despite their striking differences in colour, all three of these feathers contain canthaxanthin (β,β-carotene-4,4'-dione) as their primary pigment.
View Article and Find Full Text PDFThe photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution.
View Article and Find Full Text PDFIn recent years there has been much interest in the role that products of carotenoid breakdown--the norisoprenoids--may play in wine aroma. The basis for this interest is that norisoprenoids have very low olfactory perception thresholds and so have a high sensorial impact on wine aroma. The norisoprenoids can be formed by direct degradation of carotenoids such beta-carotene and neoxanthin or they can be stored as glycoconjugates, which can then release their volatile aglycone during fermentation via enzymatic and acid hydrolysis processes.
View Article and Find Full Text PDFCarotenoids and chlorophyll-derived compounds in grapes and Port wines were investigated by HPLC-DAD and HPLC-DAD-MS (ESP+) analysis. A total of 13 carotenoid and chlorophyll-derived compounds are formally reported in grapes, 3 are identified for the first time, pheophytins a and b and (13Z)-beta-carotene, and 3 others remain unknown. In Port wines 19 compounds with carotenoid or chlorophyll-like structures are present, 8 still unidentified.
View Article and Find Full Text PDFCarotenoids in grapes of three Port winemaking cultivars were investigated. Extracts were obtained with n-hexane/diethyl ether mixtures (0/100; 20/80; 50/50; 100/0) and analyzed by normal and reversed phase HPLC-DAD. Selection and identification of peaks were based on spectroscopic characteristics - lambda(max), (%III/II) and k' values, leading to 28 probable carotenoids.
View Article and Find Full Text PDF