Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU).
View Article and Find Full Text PDFHere we investigated on the role of the calcium activated K(+)-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K(+)-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs.
View Article and Find Full Text PDFMyotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression, which is considered the neurophysiologic counterpart of transitory weakness.
View Article and Find Full Text PDFPLoS One
February 2014
Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators.
View Article and Find Full Text PDFAnabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.
View Article and Find Full Text PDFThe aim of this study was to evaluate the potential toxicological effects on fish related to the leakage of yperite from rusted bomb shells dumped at sea. Both in vivo and field studies have been performed. As for the in vivo experiment, specimen of European eel were subcutaneously injected with 0.
View Article and Find Full Text PDFThe molecular composition and drug responses of calcium-activated K(+) (BK) channels of skeletal muscle are unknown. Patch-clamp experiments combined with transcript scanning of the Kcnma1 gene encoding the alpha subunit of the BK channel were performed in rat slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles. Five splicing products of the Kcnma1 gene were isolated from Sol and FDB: the e17, e22, +29 aa, Slo27 and Slo0 variants.
View Article and Find Full Text PDFWe previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.
View Article and Find Full Text PDFObjective: The human kidney-specific chloride channels ClC-Ka (rodent ClC-K1) and ClC-Kb (rodent ClC-K2) are important determinants of renal function, participating to urine concentration and blood pressure regulation mechanisms. Here we tested the hypothesis that these chloride channels could represent new drug targets for inducing diuretic and antihypertensive effects.
Methods: To this purpose, the CLC-K blockers benzofuran derivatives MT-189 and RT-93 (10, 50, 100 mg/kg), were acutely administered by gavage in Wistar rats, and pharmacodynamic and pharmacokinetic parameters determined by functional, bioanalytical, biochemical and molecular biology assays.
Inhibitors of angiotensin converting enzymes (ACE) are clinically used to control cardiomyopathy in patients of Duchenne muscular dystrophy. Various evidences suggest potential usefulness of long-term treatment with ACE inhibitors to reduce advanced fibrosis of dystrophic muscle in the mdx mouse model. However, angiotensin II is known to exert pro-inflammatory and pro-oxidative actions that might contribute to early events of dystrophic muscle degeneration.
View Article and Find Full Text PDFOxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox.
View Article and Find Full Text PDFTfam is a single copy nuclear gene mapping on chromosome 10 in human and mouse, 20 in rat and 12 in Presbytis cristata. It encodes for an HMG (high-mobility-group) protein showing a high affinity with the two transcriptional promoters and other mitochondrial DNA regions. It is an activator of mitochondrial transcription acting in the presence of mitochondrial RNA polymerase and of transcription factor B.
View Article and Find Full Text PDFTo gain further information on the role of mitochondrial transcription factor A (TFAM) in mitochondrial biogenesis, we studied the post-translational modifications of the protein in 6- and 28-month-old rat liver. Mass spectrometry and immunoblot analysis revealed that TFAM was acetylated at a single lysine residue and that the level of acetylation did not change with age. The measurement of the content of TFAM and of mitochondrial DNA (mtDNA) in several organs (cerebellum, heart, kidney, and liver) of young and old rats showed an age-related increase of mtDNA and TFAM in all the organs analyzed, except in heart.
View Article and Find Full Text PDF