Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors.
View Article and Find Full Text PDFThe free-state solution behaviors of drugs profoundly affect their properties. Therefore, it is critical to properly evaluate a drug's unique multiphase equilibrium when in an aqueous enviroment, which can comprise lone molecules, self-associating aggregate states and solid phases. To date, the full range of nano-entities that drugs can adopt has been a largely unexplored phenomenon.
View Article and Find Full Text PDFA soluble poly(tetrazine) polymer was prepared via Suzuki polycondensation of 3,6-bis(5-bromofuran-2-yl)-1,2,4,5-tetrazine and a fluorene diboronate derivative. It can undergo efficient and quantitative post-polymerization inverse-electron-demand Diels-Alder click reactions with a variety of trans-cyclooctene (TCO) derivatives. The resulting polymers were oxidized to convert dihydropyridazine rings into pyridazines.
View Article and Find Full Text PDF