N-α-terminal acetylation is one of the most common, but least understood modifications of eukaryotic proteins. Although a high degree of conservation exists between the N-α-terminal acetylomes of plants and animals, very little information is available on this modification in plants. In yeast and humans, N-α-acetyltransferase complexes include a single catalytic subunit and one or two auxiliary subunits.
View Article and Find Full Text PDFThe selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs), which consist of about 400 nucleoporins (Nups) of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering.
View Article and Find Full Text PDFThe efficacy of gene silencing by plant microRNAs (miRNAs) is generally assumed to be predominantly determined by their abundance. In Arabidopsis the highly abundant miRNA, miR159, acts as a molecular "switch" in vegetative tissues completely silencing the expression of two GAMYB-like genes, MYB33 and MYB65. Here, we show that miR159 has a diminished silencing efficacy in the seed.
View Article and Find Full Text PDFThe VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants.
View Article and Find Full Text PDFBackground: A current challenge of microRNA (miRNA) research is the identification of biologically relevant miRNA:target gene relationships. In plants, high miRNA:target gene complementarity has enabled accurate target predictions, and slicing of target mRNAs has facilitated target validation through rapid amplification of 5' cDNA ends (5'-RACE) analysis. Together, these approaches have identified more than 20 targets potentially regulated by the deeply conserved miR159 family in Arabidopsis, including eight MYB genes with highly conserved miR159 target sites.
View Article and Find Full Text PDFThe microRNA159 (miR159) family represses the conserved GAMYB-like genes that encode R2R3 MYB domain transcription factors that have been implicated in gibberellin (GA) signaling in anthers and germinating seeds. In Arabidopsis (Arabidopsis thaliana), the two major miR159 family members, miR159a and miR159b, are functionally specific for two GAMYB-like genes, MYB33 and MYB65. These transcription factors have been shown to be involved in anther development, but there are differing reports about their role in the promotion of flowering and little is known about their function in seed germination.
View Article and Find Full Text PDFTo identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3' (2'),5'-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning.
View Article and Find Full Text PDFElegant work by others has highlighted the importance of auxin transport in venation patterning, an idea substantiated by the severe effects of auxin polar transport inhibitors and by the mutant phenotype and expression patterns associated with the auxin efflux transporter PIN-FORMED1 (PIN1). It is striking, therefore, that little attention has been paid to the venation patterns of mutants insensitive to this hormone, since both auxin transport and perception are crucial components in theoretical models of vascular patterning. Our finding that HEMIVENATA (HVE) is the same gene as CAND1 confirms the role of ubiquitin-mediated auxin perception in vascular patterning and sets the stage for a re-examination of the leaf venation phenotypes of other auxin-resistant mutants and additional components of the ubiquitin pathway.
View Article and Find Full Text PDF