Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data.
View Article and Find Full Text PDFHuman pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color prediction, with both models achieving high accuracy among Europeans.
View Article and Find Full Text PDFForensic Sci Int Genet
May 2019
SNP analysis is of paramount importance in forensic genetics. The development of new technologies in next-generation sequencing allowed processing a large number of markers in various samples simultaneously. Although SNPs are less informative than STRs, they present lower mutation rates and perform better when using degraded samples.
View Article and Find Full Text PDFHum Immunol
November 2018
Human leukocyte antigen-G (HLA-G) is a nonclassical Major Histocompatibility Complex (MHC) molecule with immunomodulatory function and restricted tissue expression. The genetic diversity of HLA-G has been extensively studied in several populations, however, the segment located upstream -1406 has not yet been evaluated. We characterized the nucleotide variation and haplotype structure of an extended distal region (-2635), all exons and the 3'UTR segment of HLA-G by next-generation sequencing (NGS) in a sample of 335 Brazilian individuals.
View Article and Find Full Text PDF