Publications by authors named "Maria Luisa Sanjuan"

Modifying hydrogels in order to enhance their conductivity is an exciting field with applications in cardio and neuro-regenerative medicine. Therefore, we have designed hybrid alginate hydrogels containing uncoated and protein-coated reduced graphene oxide (rGO). We specifically studied the adsorption of three different proteins, BSA, elastin, and collagen, and the outcomes when these protein-coated rGO nanocomposites are embedded within the hydrogels.

View Article and Find Full Text PDF

The use of embedded cells within alginate matrices is a developing technique with great clinical applications in cell-based therapies. However, one feature that needs additional investigation is the improvement of alginate-cells viability, which could be achieved by integrating other materials with alginate to improve its surface properties. In recent years, the field of nanotechnology has shown the many properties of a huge number of materials.

View Article and Find Full Text PDF

Membranes are a critical technology for energy-efficient separation processes. The routine method of evaluating membrane performance is a permeation measurement. However, such measurements can be limited in terms of their utility: membrane microstructure is often poorly characterized; membranes or sealants leak; and conditions in the gas phase are poorly controlled and frequently far-removed from the conditions employed in the majority of real processes.

View Article and Find Full Text PDF

The first fluorination of the cuspidine-related phases of Ln(AlO□)O (where Ln = Sm, Eu, Gd) is reported. A low-temperature reaction with poly(vinyl-idene difluoride) lead to the fluorine being substituted in place of oxygen and inserted into the vacant position between the dialuminate groups. X-ray photoelectron spectroscopy shows the presence of the F 1 photoelectron together with an increase in Al 2 and rare-earth 4 binding energies supporting F incorporation.

View Article and Find Full Text PDF

With appropriate doping or processing, Li7La3Zr2O12 (LLZO) is an excellent candidate to be used in Li batteries either as a solid electrolyte or as a separator between the Li anode and a liquid electrolyte. For both uses, the reactivity with water either from the air or in aqueous media is a matter of interest. We address here the structural changes undergone by LLZO as a result of H(+)/Li(+) exchange and relate them with the amount of H content and atomic distribution.

View Article and Find Full Text PDF

A new hydrated sodium nickel fluoride with nominal composition NaNiF3·3H2O was synthesized using an aqueous solution route. Its structure was solved by means of ab initio methods from powder X-ray diffraction and neutron diffraction data. NaNiF3·3H2O crystallizes in the cubic crystal system, space group Pn3̅ with a = 7.

View Article and Find Full Text PDF

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs.

View Article and Find Full Text PDF

The thermal stability of nanostructured Ce(0.5)Zr(0.5)O(2) powders prepared by the Pechini method was studied on the nanometric scale by X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), and Raman techniques.

View Article and Find Full Text PDF