Publications by authors named "Maria Luisa Jimeno"

Some intriguing skeletal transformations were observed in the reaction of α-hydroxypyrrolidine thymine nucleoside with different dicarbonyl compounds. In these reactions, unusual ring systems, together with new C-C bonds and stereogenic centers of defined configuration, were formed in a single step. These reactions were initiated by the nucleophilic attack of the NH of the pyrrolidine ring, present on , on one of the carbonyl moieties of a dicarbonyl reagent and seem to proceed through an enamine-iminium mechanism.

View Article and Find Full Text PDF

A series of DOSY experiments have been carried out to determine the solution stoichiometry of silver(I) 3,5-bis (trifluoromethyl)pyrazolate species. This compound exists as a trimer in the solid state (n = 3) but in solutions of chlorinated solvents, the DOSY data suggest the presence of a mixture of solvent stabilized monomer (n = 1) and dimer (n = 2) in equilibrium. Different approximations have been used including the Stokes-Einstein and the Stokes-Einstein-Gierer-Wirtz equations.

View Article and Find Full Text PDF

In the current study the ability of four previously characterized bifidobacterial β-galactosidases (designated here as BgaA, BgaC, BgaD, and BgaE) to produce galacto-oligosaccharides (GOS) was optimized. Of these enzymes, BgaA and BgaE were found to be promising candidates for GOS production (and the corresponding GOS mixtures were called GOS-A and GOS-E, respectively) with a GOS concentration of 19.0 and 40.

View Article and Find Full Text PDF

Trehalose, α-d-glucopyranosyl-(1↔1)-α-d-glucopyranoside, is a disaccharide with multiple effects on the human body. Synthesis of new trehalose derivatives was investigated through transgalactosylation reactions using β-galactosidase from four different species. β-galactosidases from () and () were observed to be the best biocatalysts, using lactose as the donor and trehalose as the acceptor.

View Article and Find Full Text PDF

In order to know the catalytic activities of the disaccharidases expressed in the mammalian small intestinal brush-border membrane vesicles (BBMV) high concentrated solutions of sucrose, maltose, isomaltulose, trehalose and the mixture sucrose:lactose were incubated with pig small intestine disaccharidases. The hydrolysis and transglycosylation reactions generated new di- and trisaccharides, characterized and quantified by GC-MS and NMR, except for trehalose where only hydrolysis was detected. In general, α-glucosyl-glucoses and α-glucosyl-fructoses were the most abundant structures, whereas no fructosyl-fructoses or fructosyl-glucoses were found.

View Article and Find Full Text PDF

This work describes the high capacity of MelA α-galactosidase from WCFS1 to transfer galactosyl residues from melibiose to the C6-hydroxyl group of disaccharide-acceptors with β-linkages (lactulose, lactose, and cellobiose) or α-linkages (isomaltulose and isomaltose) to produce novel galactose-containing hetero-oligosaccharides (HOS). A comprehensive nuclear magnetic resonance characterization of the transfer products derived from melibiose:lactulose reaction mixtures revealed the biosynthesis of α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose as the main component as well as the presence of α-d-galactopyranosyl-(1 → 3)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose and α-d-galactopyranosyl-(1 → 6)-α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose. Melibiose-derived α-galactooligosaccharides (α-GOS), manninotriose and verbascotetraose, were also simultaneously synthesized.

View Article and Find Full Text PDF

The aberrant aggregation of certain peptides and proteins, forming extracellular plaques of fibrillar material, is one of the hallmarks of amyloid diseases, such as Alzheimer's and Parkinson's. Herein, we have designed a new family of solvatochromic dyes based on the 9-amino-quinolimide moiety capable of reporting during the early stages of amyloid fibrillization. We have rationally improved the photophysical properties of quinolimides by placing diverse amino groups at the 9-position of the quinolimide core, leading to higher solvatochromic and fluorogenic character and higher lifetime dependence on the hydrophobicity of the environment, which represent excellent properties for the sensitive detection of prefibrillar aggregates.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on LacA β-galactosidase from the probiotic WCFS1, detailing its production and biochemical properties.
  • The enzyme exhibits optimal activity at pH levels between 4.0-7.0 and temperatures of 30-37 °C, demonstrating significant hydrolysis of lactose and lactulose.
  • Novel galactosyl derivatives of xylitol were identified, indicating the enzyme's potential for synthesizing galactosyl-polyols for use as prebiotics or low-calorie sweeteners.
View Article and Find Full Text PDF

Enzymatic transgalactosylation, in different concentrated carbohydrate solutions, was investigated using brush border membrane vesicles (BBMV) from the pig small intestine. When lactulose was incubated with BBMV, the hydrolytic activity of the enzyme towards the disaccharide was observed to be very low compared to that towards the lactose, but the linkage specificity β-(1 → 3), previously observed in lactose solutions, was not significantly affected. As in the case of lactose, lactulose transgalactosylation by BBMV synthesizes the corresponding 3'-galactosyl derivative (β-Gal-(1 → 3)-β-Gal-(1 → 4)-β-Fru).

View Article and Find Full Text PDF

Tacrine was the first drug to be approved for Alzheimer's disease (AD) treatment, acting as a cholinesterase inhibitor. The neuropathological hallmarks of AD are amyloid-rich senile plaques, neurofibrillary tangles, and neuronal degeneration. The portfolio of currently approved drugs for AD includes acetylcholinesterase inhibitors (AChEIs) and -methyl-d-aspartate (NMDA) receptor antagonist.

View Article and Find Full Text PDF

We previously showed that a small molecule of natural origin, 1,2,3,4,6-penta- O-galloyl-β-d-glucopyranose (PGG), binds to capillary morphogenesis gene 2 (CMG2) with a submicromolar IC and also has antiangiogenic activity in vitro and in vivo. In this work, we synthetized derivatives of PGG with different sugar cores and phenolic substituents and tested these as angiogenesis inhibitors. In a high-throughput Förster resonant energy transfer-based binding assay, we found that one of our synthetic analogues (1,2,3,4,6-penta- O-galloyl-β-d-mannopyranose (PGM)), with mannose as central core and galloyl substituents, exhibit higher (up to 10×) affinity for CMG2 than the natural glucose prototype PGG and proved to be a potent angiogenesis inhibitor.

View Article and Find Full Text PDF

This work highlights the utility of brush border membrane vesicles (BBMV) from the pig small intestine as a reliable model for gathering information about the reaction mechanisms involved in the human digestion of dietary carbohydrates. Concretely, the elucidation of the transgalactosylation mechanism of pig BBMV to synthesize prebiotic galacto-oligosaccharides (GOS) is provided, unravelling the catalytic activity of mammalian small intestinal β-galactosidase towards the hydrolysis of GOS. This study reveals that pig BBMV preferably synthesizes GOS linked by β-(1 → 3) bonds, since major tri- and disaccharide were produced by the transfer of a galactose unit to the C-3 of the non-reducing moiety of lactose and to the C-3 of glucose, respectively.

View Article and Find Full Text PDF

This work addresses the high-yield and fast enzymatic production of theanderose, a naturally occurring carbohydrate, also known as isomaltosucrose, whose chemical structure determined by NMR is α-d-glucopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1 → 2)-β-d-fructofuranose. The ability of isomaltose to act as an acceptor in the Bacillus subtilis CECT 39 levansucrase-catalyzed transfructosylation reaction to efficiently produce theanderose in the presence of sucrose as a donor is described by using four different sucrose:isomaltose concentration ratios. The maximum theanderose concentration ranged from 122.

View Article and Find Full Text PDF

Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.

View Article and Find Full Text PDF

We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3''-amino-4''-methoxyphenyl)-1-(5'-methoxy-3',4'-methylendioxyphenyl)-2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-to-straight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM.

View Article and Find Full Text PDF

The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter.

View Article and Find Full Text PDF

The chemical study on the total extract of the zoanthid Palythoa tuberculosa, collected from the Red Sea, resulted in the isolation of seven polyhydroxylated sterols (1-7), six of which, palysterols A-F (2-7), are new. Their chemical structures were elucidated on the basis of extensive analysis of their 1-, 2D NMR and MS spectroscopic data. This is the first chemical investigation on the species collected from Red Sea.

View Article and Find Full Text PDF

Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA-blood-brain barrier (BBB) analysis of new tacrine-ferulic acid hybrids (TFAHs). We identified (E)-3-(hydroxy-3-methoxyphenyl)-N-{8[(7-methoxy-1,2,3,4-tetrahydroacridin-9-yl)amino]octyl}-N-[2-(naphthalen-2-ylamino)2-oxoethyl]acrylamide (TFAH 10 n) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50 =68.2 nM), strong antioxidant activity (4.

View Article and Find Full Text PDF

Herein we describe a class of unconventional nucleosides (methyloxynucleosides) that combine unconventional nucleobases such as substituted aminopyrimidines, aminopurines, or aminotriazines with unusual sugars in their structures. The allitollyl or altritollyl derivatives were pursued as ribonucleoside mimics, whereas the tetrahydrofuran analogues were pursued as their dideoxynucleoside analogues. The compounds showed poor, if any, activity against a broad range of RNA and DNA viruses, including human immunodeficiency virus (HIV).

View Article and Find Full Text PDF

This paper reports the efficient enzymatic synthesis of a homologous series of isomaltulose-derived oligosaccharides with degrees of polymerization ranging from 3 to 9 through the transglucosylation reaction using a dextransucrase from Leuconostoc mesenteroides B-512F. The total oligosaccharide yield obtained under optimal conditions was 41-42% (in weight with respect to the initial amount of isomaltulose) after 24-48 h of reaction. Nuclear magnetic resonance (NMR) structural characterization indicated that dextransucrase specifically transferred glucose moieties of sucrose to the C-6 of the nonreducing glucose residue of isomaltulose.

View Article and Find Full Text PDF

The ability of an inulosucrase (IS) from Lactobacillus gasseri DSM 20604 to synthesize fructooligosaccharides (FOS) and maltosylfructosides (MFOS) in the presence of sucrose and sucrose-maltose mixtures was investigated after optimization of synthesis conditions, including enzyme concentration, temperature, pH, and reaction time. The maximum formation of FOS, which consist of β-2,1-linked fructose to sucrose, was 45% (in weight with respect to the initial amount of sucrose) and was obtained after 24 h of reaction at 55°C in the presence of sucrose (300 g liter(-1)) and 1.6 U ml(-1) of IS-25 mM sodium acetate buffer-1 mM CaCl2 (pH 5.

View Article and Find Full Text PDF

This work describes an efficient enzymatic synthesis and NMR structural characterization of the trisaccharide β-D-galactopyranosyl-(1→4)-β-D-fructofuranosyl-(2→1)-α-D-glucopyranoside, also termed as lactulosucrose. This oligosaccharide was formed by the Leuconostoc mesenteroides B-512F dextransucrase-catalyzed transfer of the glucosyl residue from sucrose to the 2-hydroxyl group of the reducing unit of lactulose. The enzymatic reaction was carried out under optimal conditions, i.

View Article and Find Full Text PDF

UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1.

View Article and Find Full Text PDF