Publications by authors named "Maria Luisa Dupuis"

Glioblastoma (GBL) is one of the more malignant primary brain tumors; it is currently treated by a multimodality strategy including surgery, and radio- and chemotherapy, mainly consisting of temozolomide (TMZ)-based chemotherapy. Tumor relapse often occurs due to the establishment of TMZ resistance, with a patient median survival time of <2 years. The identification of natural molecules with strong anti-tumor activity led to the combination of these compounds with conventional chemotherapeutic agents, developing protocols for integrated anticancer therapies.

View Article and Find Full Text PDF

Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs.

View Article and Find Full Text PDF

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes.

View Article and Find Full Text PDF

Hypovitaminosis D is involved in various inflammatory, infectious and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. Moreover, the active form of vitamin D, calcitriol, has been shown to modulate the immune response, playing an anti-inflammatory effect. However little is known about the mechanisms underlying this anti-inflammatory effect and the potential sex differences of calcitriol immune regulation.

View Article and Find Full Text PDF

Breast cancer is one of the most diffuse cancers in the world and despite the availability of the different drugs employed against it, the need for new and particularly more specific molecules is ever growing. In this framework, natural products are increasingly assuming an important role as new anticancer drugs. Aloe-emodin (AE) is one of the best characterized molecules in this field.

View Article and Find Full Text PDF

Background/aim: About 40% of patients with diffuse large cell lymphoma (DLBCL) still have a poor prognosis. Additionally, DLBCL patients treated with doxorubicin are at risk of cardiac failure. Growing evidence suggests an antitumor and cardioprotective activity exerted by estrogen via its binding to estrogen receptor (ER) β.

View Article and Find Full Text PDF
Article Synopsis
  • Vitamin D helps control the immune system by reducing inflammation and promoting healthy responses against diseases.
  • There are differences in how vitamin D affects males and females, especially because of hormones like estrogen, which can change immune responses.
  • Women may benefit more from vitamin D treatments for autoimmune diseases, but more research is needed to understand these differences better.
View Article and Find Full Text PDF

Background: The NCAM or CD56 antigen is a cell surface glycoprotein belonging to the immunoglobulin super-family involved in cell-cell and cell-matrix adhesion. NCAM is also over-expressed in many tumour types and is considered a tumour associated antigen, even if its role and biological mechanisms implicated in tumour progression and metastasis have not yet to be elucidated. In particular, it is quite well documented the role of the interaction between the NCAM protein and the fibroblast growth factor receptor-1 in metastasis and invasion, especially in the ovarian cancer progression.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) functions as a ligand dependent transcription factor that directly binds specific estrogen responsive elements, thus regulating the transcription of estrogen sensitive genes. ERα has also been shown to be associated with the plasma membrane (membrane associated ERα, mERα), concentrated in lipid rafts, plasma membrane microdomains with a distinct lipid composition, where it transduces membrane-initiated estrogen-dependent activation of the mitogen-activated protein (MAP) kinase signaling pathway. Two isoforms of ERα have been described: the "traditional" ERα66 (66 kDa) and a lower molecular weight variant: the ERα46 (46 kDa).

View Article and Find Full Text PDF

Several chronic neuroinflammatory diseases, including Parkinson's disease (PD), have the so-called 'redox imbalance' in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition.

View Article and Find Full Text PDF
Article Synopsis
  • Estrogens, especially a type called 17β-estradiol (E2), affect the immune system and can influence diseases where the body attacks itself, like autoimmune diseases.
  • The study looked at a natural compound called silibinin, which comes from milk thistle, to see how it affects immune cells, specifically T cells, in both women and men.
  • Researchers found that silibinin helps increase a receptor (ERβ), reduces the growth of T cells, and lowers inflammation-related signals in both healthy people and those with rheumatoid arthritis.
View Article and Find Full Text PDF

Background: Raltegravir (Isentress®)(RALT) has demonstrated excellent efficacy in both treatment-experienced and naïve patients with HIV-1 infection, and is the first strand transfer integrase inhibitor to be approved for use in HIV infected adults worldwide. Since the in vivo efficacy of this class of antiviral drugs depends on their access to intracellular sites where HIV-1 replicates, we analyzed the biological effects induced by RALT on human MDR cell systems expressing multidrug transporter MDR1-P-glycoprotein (MDR1-Pgp).

Methods: Our study about RALT was performed by using a set of consolidated methodologies suitable for evaluating the MDR1-Pgp substrate nature of chemical and biological agents, namely: i) assay of drug efflux function; ii) analysis of MDR reversing capability by using cell proliferation assays; iii) monoclonal antibody UIC2 (mAb) shift test, as a sensitive assay to analyze conformational transition associated with MDR1-Pgp function; and iv) induction of MDR1-Pgp expression in MDR cell variant subjected to RALT exposure.

View Article and Find Full Text PDF

The survival of pediatric patients with cancer entities including osteosarcoma and Ewing's sarcoma (ES), remains extremely low hence novel treatment approaches are urgently needed. Therefore, based on the concept of targeted therapy, numerous potential targets for the treatment of these cancers have been evaluated pre-clinically or in some cases even clinically during the last decade. In ES the CD99 protein is an attractive target antigen.

View Article and Find Full Text PDF

Salinomycin, a polyether antibiotic acting as a highly selective potassium ionophore and widely used as an anticoccidial drug, was recently shown to act as a specific inhibitor of cancer stem cells. In the present study we report that salinomycin acts as a potent inhibitor of multidrug resistance gp170, as evidenced through drug efflux assays in MDR cancer cell lines overexpressing P-gp (CEM-VBL 10 and CEM-VBL 100; A2780/ADR). Conformational P-gp assay provided evidence that the inhibitory effect of salinomycin on P-gp function could be mediated by the induction of a conformational change of the ATP transporter.

View Article and Find Full Text PDF

In this study we elucidated the role of ATP-binding cassette (ABC) multi-drug transporter proteins and cellular factors such as Bcl-2 expression and CD33 down-modulation contributing to free and hP67.6 mAb linked calicheamicin-gamma1 (CalC-gamma1) resistance. We analyzed in a well designed HL60 cell system the relationship between the expression of ABC proteins, Bcl-2 and CD33 modulation with the activity of free and mAb-linked CalC-gamma1.

View Article and Find Full Text PDF

Purpose: There has been an ever growing interest in the search for new anti-tumor compounds that do not interact with MDR1-Pgp and MRP1 drug transporters and so circumvent the effect of these proteins conferring multidrug resistance (MDR) and poor prognosis in AML patients. We have investigated the cytotoxic activity of the strong glutathione S-transferase (GST) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on AML (HL60) cell lines.

Methods: Functional drug efflux studies and cell proliferation assays were performed on both sensitive and MDR AML (HL60) cells after incubation with NBDHEX.

View Article and Find Full Text PDF

We report the genetic construction and expression of a fusion protein between a single chain fragment variable (scFv) human antibody (E8) specific for CEA cell surface antigen and yeast cytosine deaminase (yCD). Sequences encoding for the scFvE8 human monoclonal antibody recognizing an epitope shared by CEACAM1, CEACAM3 and CEACAM5 isoforms were assembled with a monomer of yCD. The construct was placed under the transcriptional regulation of the lac promoter, and in frame with 6xHis tag for protein purification.

View Article and Find Full Text PDF

In the present work, we have investigated the antitumor activity of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on aggressive small cell lung cancer. NBDHEX not only is cytotoxic toward the parental small cell lung cancer H69 cell line (LC(50) of 2.3 +/- 0.

View Article and Find Full Text PDF

Background: The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN) (IN inhibitors, IINs) has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp) thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA) derivatives active on the HIV-1 IN strand transfer (ST) step and with EC50 ranging from 1.

View Article and Find Full Text PDF

The new glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is cytotoxic toward P-glycoprotein-overexpressing tumor cell lines, i.e. CEM-VBL10, CEM-VBL100, and U-2 OS/DX580.

View Article and Find Full Text PDF

Background: CEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration.

Methods: The human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein.

View Article and Find Full Text PDF

To overcome the limitation represented by the poor immunogenicity of prion protein (PrP) for conventional monoclonal antibodies preparation, we adopted an antibody phage display strategy to isolate specific human single chain fragment variable (scFv) directed towards the pathogenic isoform of the hamster prion protein (HaPrPsc). Phage-displaying HaPrPsc reactive scFvs were obtained after three rounds of selection of the ETH- 2 synthetic antibody library on HaPrPsc-coated immunotubes and subsequent amplification in TG1 E. coli cells.

View Article and Find Full Text PDF

Despite biotechnological and clinical applications very few monoclonal antibodies (MAbs) directed to the enzyme glucose oxidase, have been produced so far because of the heavy side effects of the immunization schedule for conventional MAb preparation. In contrast, the phage display method allows for the selection of monoclonal human antibody fragments against any antigens, including toxic proteins. Furthermore, cDNA sequences encoding selected antibody fragments are readily identified, facilitating various molecular targeting approaches.

View Article and Find Full Text PDF

Background: Tumor-associated antigens recognized by humoral effectors of the immune system are a very attractive target for human cancer diagnostics and therapy. Recent advances in molecular techniques have led to molecular definition of immunogenic tumor proteins based on their reactivity with autologous patient sera (SEREX).

Methods: Several high complexity phage-displayed cDNA libraries from breast carcinomas, human testis and breast carcinoma cell lines MCF-7, MDA-MB-468 were constructed.

View Article and Find Full Text PDF

To investigate expression, subcellular localization and mechanisms of translocation of phosphatidylcholine-specific phospholipase C (PC-PLC) during the cell proliferative response, biochemical, immunoblotting, and immunofluorescence analyses were performed on quiescent and mitogen-stimulated NIH-3T3 fibroblasts. Platelet-derived growth factor (PDGF), insulin and 12-O-tetradecanoylphorbol-13-acetate induced, in 10-60 min, PC-PLC translocation from a perinuclear cytoplasmic area to the plasma membrane. Following cell exposure to PDGF (60 min), the overall PC-PLC expression increased up to 2-3x, while the enzyme activity increased 5x in total cell lysates, 2x in the plasma membrane, and 4x in the nucleus; moreover, confocal laser scanning microscopy showed a progressive externalization of PC-PLC on the outer plasma membrane surface and its accumulation in the nuclear matrix.

View Article and Find Full Text PDF