The timing and efficiency of arsenic (As) accumulation is crucial for using the hyperaccumulator P. vittata in remediation of As-contaminated soils. In this study, through an innovative microXRF-based approach, using a new "pinna powder" sampling method, we monitored As accumulation over time in fronds of individual P.
View Article and Find Full Text PDFThis greenhouse study evaluated the effects of soil enrichment with rhizosphere bacteria on the growth and accumulation of arsenic in grown on a naturally As-rich soil. Inoculations were performed with a consortium of six bacteria resistant to 100 mM arsenate and effects were compared to those obtained on the sterilized soil. Selected bacteria from the consortium were also utilized individually: PVr_9 homologous to that produces IAA and siderophores and shows ACC deaminase activity, PVr_15 homologous to that contains the arsenate reductase gene, and PVr_5 homologous to that possesses all traits from both PVr_9 and PVr_15.
View Article and Find Full Text PDFUrban air pollution is a crucial global challenge, mainly originating from urbanization and industrial activities, which are continuously increasing. Vegetation serves as a natural air filter for air pollution, but adverse effects on plant health, photosynthesis, and metabolism can occur. Recent omics technologies have revolutionized the study of molecular plant responses to air pollution, overcoming previous limitations.
View Article and Find Full Text PDFIn this work, arsenic (As) accumulation and distribution over time in Pteris vittata young fronds from adult plants and in whole plantlets, grown on a highly contaminated As-soil, was determined by μ-XRF. A linear increase in As content up to 60 days was found in young fronds at different times, and a progressive distribution from the apex to the base of the fronds was observed. In whole plantlets, As signal was detectable from 9 to 20 days in the apex of a few fronds and fiddleheads.
View Article and Find Full Text PDFPlants (Basel)
January 2022
Beneficial interactions between plants and some bacterial species have been long recognized, as they proved to exert various growth-promoting and health-protective activities on economically relevant crops. In this study, the growth promoting and antifungal activity of six bacterial strains, , , , sp., , and , were investigated.
View Article and Find Full Text PDF