Quality losses in fresh produce throughout the postharvest phase are often due to the inappropriate use of preservation technologies. In the last few decades, besides the traditional approaches, advanced postharvest physical and chemical treatments (active packaging, dipping, vacuum impregnation, conventional heating, pulsed electric field, high hydrostatic pressure, and cold plasma) and biocontrol techniques have been implemented to preserve the nutritional value and safety of fresh produce. The application of these methodologies after harvesting is useful when addressing quality loss due to the long duration when transporting products to distant markets.
View Article and Find Full Text PDFThe potential of hyperspectral imaging for the prediction of the internal composition of goji berries was investigated. The prediction performances of models obtained in the Visible-Near Infrared (VIS-NIR) (400-1000 nm) and in the Near Infrared (NIR) (900-1700 nm) regions were compared. Analyzed constituents included Vitamin C, total antioxidant, phenols, anthocyanin, soluble solids content (SSC), and total acidity (TA).
View Article and Find Full Text PDF, responsible for grey mold, represents the first biological cause of fruit and vegetable spoilage phenomena in post-harvest. Kiwifruit is a climacteric fruit particularly prone to this mold infestation during storage. Lactic acid bacteria (LAB) are food-grade bacteria that can synthesize several metabolites with antimicrobial activity and are, therefore, suggested as promising and eco-friendly resources for the bio-control of molds on fruits and vegetables.
View Article and Find Full Text PDFDue to the increasing interest for healthy foods, the feasibility of using fresh-cut fruits to vehicle probiotic microorganisms is arising scientific interest. With this aim, the survival of probiotic lactic acid bacteria, belonging to Lactobacillus plantarum and Lactobacillus fermentum species, was monitored on artificially inoculated pineapple pieces throughout storage. The main nutritional, physicochemical, and sensorial parameters of minimally processed pineapples were monitored.
View Article and Find Full Text PDF