Publications by authors named "Maria Louise Elkjaer"

Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS.

View Article and Find Full Text PDF

Objectives: In a prospective phase IV trial of the first-line oral treatment dimethyl fumarate (DMF), we examined dynamics of neurofilament light (NFL) chain in serum, plasma and cerebrospinal fluid (CSF) samples collected over 12 months from relapsing-remitting multiple sclerosis (RRMS) patients. NFL changes were related to disease activity.

Methods: We examined NFL levels by single-molecule array in 88 CSF, 348 plasma and 131 sera from treatment-naïve RRMS patients (n=52), healthy controls (n=23) and a placebo group matched by age, sex and NFL (n=52).

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear.

View Article and Find Full Text PDF

The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation.

View Article and Find Full Text PDF