Uveal melanoma (UM) is a rare ocular tumor characterized by high metastasis risk and poor prognosis. The in-depth characterization of UM's molecular profile is critical for better disease classification and prognosis. Furthermore, the development of detection tools to monitor UM evolution upon treatment is of great interest for designing optimal therapeutic strategies.
View Article and Find Full Text PDFThe COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including isothermal amplification of viral nucleic acids, CRISPR-mediated target recognition, and read-out systems based on nanomaterials.
View Article and Find Full Text PDFWe present a fast, reliable and easy to scale-up colorimetric sensor based on gold nanoparticles (AuNPs) to detect the sequences coding for the RdRp, E, and S proteins of SARS-CoV-2. The optimization of the system (so-called "the sensor") includes the evaluation of different sizes of nanoparticles, sequences of oligonucleotides and buffers. It is stable for months without any noticeable decrease in its activity, allowing the detection of SARS-CoV-2 sequences by the naked eye in 15 min.
View Article and Find Full Text PDFThe versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses.
View Article and Find Full Text PDF