Publications by authors named "Maria Lloret"

Patients with chronic kidney disease (CKD) experience a several-fold increased risk of fracture. Despite the high incidence and the associated excess morbidity and premature mortality, bone fragility in CKD, or CKD-associated osteoporosis, remains a blind spot in nephrology with an immense treatment gap. Defining the bone phenotype is a prerequisite for the appropriate therapy of CKD-associated osteoporosis at the patient level.

View Article and Find Full Text PDF

Fracture risk assessment in patients with chronic kidney disease (CKD) has been included in the CKD-MBD ("Chronic Kidney Disease-Mineral and Bone Disorders") complex in international and national nephrology guidelines, suggesting for the first time the assessment of bone mineral density (BMD) if the results can influence therapeutic decision-making. However, there is very little information on actual clinical practice in this population. The main objective of the ERCOS (ERC-Osteoporosis) study is to describe the profile of patients with CKD G3-5D with osteoporosis (OP) and/or fragility fractures treated in specialized nephrology, rheumatology and internal medicine clinics in Spain.

View Article and Find Full Text PDF

Bone strength is determined not only by bone quantity [bone mineral density (BMD)] but also by bone quality, including matrix composition, collagen fiber arrangement, microarchitecture, geometry, mineralization, and bone turnover, among others. These aspects influence elasticity, the load-bearing and repair capacity of bone, and microcrack propagation and are thus key to fractures and their avoidance. In chronic kidney disease (CKD)-associated osteoporosis, factors traditionally associated with a lower bone mass (advanced age or hypogonadism) often coexist with non-traditional factors specific to CKD (uremic toxins or renal osteodystrophy, among others), which will have an impact on bone quality.

View Article and Find Full Text PDF

Background And Objectives: Acute kidney injury (AKI) is common among hospitalized patients with COVID-19 and associated with worse prognosis. The Spanish Society of Nephrology created the AKI-COVID Registry to characterize the population admitted for COVID-19 that developed AKI in Spanish hospitals. The need of renal replacement therapy (RRT) therapeutic modalities, and mortality in these patients were assessed.

View Article and Find Full Text PDF

Although phosphorus is an essential element for life, it is not found in nature in its native state but rather combined in the form of inorganic phosphates (PO), with tightly regulated plasma levels that are associated with deleterious effects and mortality when these are out of bounds. The growing interest in the accumulation of PO in human pathophysiology originated in its attributed role in the pathogenesis of secondary hyperparathyroidism (SHPT) in chronic kidney disease. In this article, we review the mechanisms by which this effect was justified and we commemorate the important contribution of a Spanish group led by Dr.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (SHPT) is an integral component of the chronic kidney disease-mineral and bone disorder (CKD-MBD). Many factors have been associated with the development and progression of SHPT but the presence of skeletal or calcemic resistance to the action of PTH in CKD has often gone unnoticed. The term hyporesponsiveness to PTH is currently preferred and, in this chapter, we will not only review the scientific timeline but also some of the molecular mechanisms behind.

View Article and Find Full Text PDF

According to current guidelines, in chronic lymphocytic leukemia (CLL), only the molecular status must be evaluated prior to every treatment's initiation. However, additional heterogeneous genetic events are known to confer a proliferative advantage to the tumor clone and are associated with progression and treatment failure in CLL patients. Here, we describe the implementation of a comprehensive targeted sequencing solution that is suitable for routine clinical practice and allows for the detection of the most common somatic single-nucleotide and copy number variants in genes relevant to CLL.

View Article and Find Full Text PDF

Oxidative stress is an early occurrence in the development of Alzheimer's disease (AD) and one of its proposed etiologic hypotheses. There is sufficient experimental evidence supporting the theory that impaired antioxidant enzymatic activity and increased formation of reactive oxygen species (ROS) take place in this disease. However, the antioxidant treatments fail to stop its advancement.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with a very high morbimortality, mainly from cardiovascular origin, and CKD is currently considered in the high- or very high risk- cardiovascular risk category. CKD-mineral and bone disorders (CKD-MBDs), including vascular and/or valvular calcifications, are also associated with these poor outcomes. Vascular calcification (VC) is very prevalent (both intimal and medial), even in non-dialysis dependent patients, with a greater severity and more rapid progression.

View Article and Find Full Text PDF

Background: The efficacy and safety of sucroferric oxyhydroxide (SO) have been reported in clinical trials. However, real-life data are scarce. This study presents data on the use, efficacy and safety of SO in real clinical practice.

View Article and Find Full Text PDF

TRPP3 (also called PKD2L1) is a nonselective, cation-permeable channel activated by multiple stimuli, including extracellular pH changes. TRPP3 had been considered a candidate for sour sensor in humans, due to its high expression in a subset of tongue receptor cells detecting sour, along with its membership to the TRP channel family known to function as sensory receptors. Here, we describe the functional consequences of two non-synonymous genetic variants (R278Q and R378W) found to be under strong positive selection in an Ethiopian population, the Gumuz.

View Article and Find Full Text PDF

Cardiovascular (CV) calcification is a highly prevalent condition at all stages of chronic kidney disease (CKD) and is directly associated with increased CV and global morbidity and mortality. In the first part of this review, we have shown that CV calcifications represent an important part of the CKD-MBD complex and are a superior predictor of clinical outcomes in our patients. However, it is also necessary to demonstrate that CV calcification is a modifiable risk factor including the possibility of decreasing (or at least not aggravating) its progression with iatrogenic manoeuvres.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) has been used as a model and source of knowledge concerning the mechanisms, clinical relevance and accelerated progression of cardiovascular (CV) calcification, as well as its consequences in clinical practice, despite we know that it is a late secondary ossification phenomenon and only circumstantial evidence is available. In this comprehensive review, we firstly describe the types of CV calcification which affect CKD patients, and we analyse how its presence is directly associated with CV events and increased mortality in these patients. We also justify the use of CV calcification assessment in regular nephrology clinical practice, because CV calcification is an important predictor of clinical outcome in these patients.

View Article and Find Full Text PDF

A precise understanding of mechanisms used by human embryonic stem cells (hESCs) to maintain genomic integrity is very important for their potential clinical applications. The G1 checkpoint serves to protect genomic integrity and prevents cells with damaged DNA from entering S-phase. Previously, we have shown that downregulation of cyclin-dependent kinase 2 (CDK2) in hESC causes G1 arrest, loss of pluripotency, upregulation of cell cycle inhibitors p21 and p27 and differentiation toward extraembryonic lineages.

View Article and Find Full Text PDF

The canonical and noncanonical NFκB signaling pathways regulate a variety of cellular activities; however, their functions in human embryonic stem cells (hESCs) have not been fully investigated. Expression studies during hESC differentiation indicated a significant increase in the expression of two key components of the canonical NFκB pathway (p50 and Ser529 phosphorylated form of p65) as well as a significant reduction in expression of key components of the noncanonical NFκB pathway [v-rel reticuloendotheliosis viral oncogene homolog B (RELB), p52, NIK]. Inhibition of canonical NFκB resulted in hESC apoptosis, changes in cell cycle distribution, and reduced hESC proliferation.

View Article and Find Full Text PDF

Background: Cryoplasty represents an alternative endovascular approach to current techniques for femoropopliteal occlusive disease treatment. Its theoretical advantage compared to angioplasty is associated with the lower appearance of recoil, dissection, and intimal hyperplasia. The aim of this study is to assess the efficacy of cryoplasty in femoropopliteal disease.

View Article and Find Full Text PDF

Background: The genetic etiologies of the hyper-IgE syndromes are diverse. Approximately 60% to 70% of patients with hyper-IgE syndrome have dominant mutations in STAT3, and a single patient was reported to have a homozygous TYK2 mutation. In the remaining patients with hyper-IgE syndrome, the genetic etiology has not yet been identified.

View Article and Find Full Text PDF

The current global epidemic of atopy and asthma has been related to the changes in environmental exposures brought about by the development and expansion of industrialized societies. This article reviews the evidence supporting the fundamental role of air pollutants in fostering allergic inflammation of the airways, with emphasis on the molecular and genetic pathways that link ambient particulate matter (PM) exposure to the induction of proinflammatory changes and proallergic effects in the respiratory tract. We propose that the link between PM exposure and proallergic effects involves organic PM components that generate oxygen radicals capable of perturbing the redox equilibrium mucosal immune cells.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions.

View Article and Find Full Text PDF

Adoptive transfer of mature T cells (ATMTC) through bone marrow (BM) transplantation, first attempted over 20 years ago, has recently emerged as a successful therapy for complete 22q deletion syndrome (22qDS). This provides a potential option to thymic transplantation (TT) for immune reconstitution in 22qDS. Compared to thymic transplant, ATMTC is an easier procedure to accomplish and is available at more centers.

View Article and Find Full Text PDF