Publications by authors named "Maria Litovchenko"

Extrachromosomal DNA (ecDNA) is a major contributor to treatment resistance and poor outcome for patients with cancer. Here we examine the diversity of ecDNA elements across cancer, revealing the associated tissue, genetic and mutational contexts. By analysing data from 14,778 patients with 39 tumour types from the 100,000 Genomes Project, we demonstrate that 17.

View Article and Find Full Text PDF

Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice.

View Article and Find Full Text PDF

Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142 cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non- and anti-adipogenic, have been reported for these cells.

View Article and Find Full Text PDF

Non-coding variants coordinate transcription factor (TF) binding and chromatin mark enrichment changes over regions spanning >100 kb. These molecularly coordinated regions are named "variable chromatin modules" (VCMs), providing a conceptual framework of how regulatory variation might shape complex traits. To better understand the molecular mechanisms underlying VCM formation, here, we mechanistically dissect a VCM-modulating noncoding variant that is associated with reduced chronic lymphocytic leukemia (CLL) predisposition and disease progression.

View Article and Find Full Text PDF

For more than 100 years, the fruit fly has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal.

View Article and Find Full Text PDF

Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of ( ) and 141 Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on mitochondrial DNA variation in Drosophila, revealing 231 variants across 12 haplotypes and highlighting the intertwined nature of mitochondrial and nuclear genomes with 1,845 instances of allelic imbalance.
  • There are no major fitness consequences from these mitonuclear imbalances, suggesting they reflect population structure rather than genomic issues.
  • Some mitochondrial haplotypes influence traits related to stress and metabolism, such as food intake in males, and experimental swaps show a high food intake haplotype can improve low intake phenotypes.
View Article and Find Full Text PDF

Single-cell omics enables researchers to dissect biological systems at a resolution that was unthinkable just 10 years ago. However, this analytical revolution also triggered new demands in 'big data' management, forcing researchers to stay up to speed with increasingly complex analytical processes and rapidly evolving methods. To render these processes and approaches more accessible, we developed the web-based, collaborative portal ASAP (Automated Single-cell Analysis Portal).

View Article and Find Full Text PDF

Background: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited.

Results: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila.

View Article and Find Full Text PDF

Eukaryotic genomes encode several buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the Drosophila gut-associated commensals, represented by a single facultative symbiont, Lactobacillus plantarum (Lp), constitutes a so far unexpected buffer that masks the contribution of the host's cryptic genetic variation (CGV) to developmental traits while the host is under nutritional stress. During chronic under-nutrition, Lp consistently reduces variation in different host phenotypic traits and ensures robust organ patterning during development; Lp also decreases genotype-dependent expression variation, particularly for development-associated genes.

View Article and Find Full Text PDF

The enormous variation in human lifespan is in part due to a myriad of sequence variants, only a few of which have been revealed to date. Since many life-shortening events are related to diseases, we developed a Mendelian randomization-based method combining 58 disease-related GWA studies to derive longevity priors for all HapMap SNPs. A Bayesian association scan, informed by these priors, for parental age of death in the UK Biobank study (n=116,279) revealed 16 independent SNPs with significant Bayes factor at a 5% false discovery rate (FDR).

View Article and Find Full Text PDF

Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle.

View Article and Find Full Text PDF

Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines.

View Article and Find Full Text PDF

Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats.

View Article and Find Full Text PDF

Multilabel classification is often hindered by incompletely labeled training datasets; for some items of such dataset (or even for all of them) some labels may be omitted. In this case, we cannot know if any item is labeled fully and correctly. When we train a classifier directly on incompletely labeled dataset, it performs ineffectively.

View Article and Find Full Text PDF

While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age.

View Article and Find Full Text PDF

Scientific understanding of the genetic components of aging has increased in recent years, with several genes being identified as playing roles in the aging process and, potentially, longevity. In particular, genes encoding components of the nuclear lamina in eukaryotes have been increasingly well characterized, owing in part to their clinical significance in age-related diseases. This review focuses on one such gene, which encodes lamin A, a key component of the nuclear lamina.

View Article and Find Full Text PDF