The role of glutamate in quantal release at the cytoneural junction was examined by measuring mEPSPs and afferent spikes at the posterior canal in the intact frog labyrinth. Release was enhanced by exogenous glutamate, or dl-TBOA, a blocker of glutamate reuptake. Conversely, drugs acting on ionotropic glutamate receptors did not affect release; the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) blocker CNQX decreased mEPSP size in a dose-dependent manner; the NMDA-R blocker d-AP5 at concentrations <200 µM did not affect mEPSP size, either in the presence or absence of Mg and glycine.
View Article and Find Full Text PDFThe post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels.
View Article and Find Full Text PDFA computational model has been developed to simulate the electrical behavior of the type II hair cell dissected from the crista ampullaris of frog semicircular canals. In its basolateral membrane, it hosts a system of four voltage-dependent conductances (g , g , g , g ). The conductance behavior was mathematically described using original patch-clamp experimental data.
View Article and Find Full Text PDFAt the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal.
View Article and Find Full Text PDFIn hair cells dissected from the frog crista ampullaris, the combination of a calcium-dependent (IKCa) and a purely voltage-dependent component (IKV) gives rise to the delayed potassium current complex (IKD). These currents have been recently reported to display slow depolarization-induced inactivation and biphasic inactivation removal by hyperpolarization. The amplitude and inactivation kinetics of both IKCa and IKV are drastically modulated by a previously unrecognized mechanism of protein phosphorylation (sensitive to kinase inhibitors H89 and KT5823), which does not interfere with the transient potassium current (IA) or the calcium current (ICa).
View Article and Find Full Text PDFThe effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(Ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (∼34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics.
View Article and Find Full Text PDFThe permeability of the nicotinic channel (nAChR) at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC) I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh), were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV) resulted in a change of the synaptic potassium/sodium permeability ratio (P(K)/P(Na)) from 1.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2010
The effects of microgravity on frog semicircular canals have been studied by electrophysiological and morphological approaches. Reduced gravity (microG) was simulated by a random positioning machine (RPM), which continually and randomly modified the orientation in space of the anesthetized animal. As this procedure stimulates the semicircular canals, the effect of altered gravity was isolated by comparing microG-treatment with an identical rotary stimulation in the presence of normal gravity (normoG).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2009
The effects of microgravity on the biophysical properties of frog labyrinthine hair cells have been examined by analyzing calcium and potassium currents in isolated cells by the patch-clamp technique. The entire, anesthetized frog was exposed to vector-free gravity in a random positioning machine (RPM) and the functional modification induced on single hair cells, dissected from the crista ampullaris, were subsequently studied in vitro. The major targets of microgravity exposure were the calcium/potassium current system and the kinetic mechanism of the fast transient potassium current, I(A).
View Article and Find Full Text PDFPotassium-current inactivation and recovery kinetics are pivotal in sustaining dynamic processing of time-varying sensory signals in hair cells. We report a detailed analysis of K(+)-currents in isolated hair cells from the frog crista ampullaris. The single components were dissected using a novel procedure based on their differential kinetic properties: The fast IA component exhibited two processes of inactivation removal; the persistent I (KD) component (I (KV) + I (KCa)), unexpectedly displayed partial inactivation, removed by negative potentials with particularly slow, delayed kinetics.
View Article and Find Full Text PDFSome aspects of Ca(2+) channel modulation in hair cells isolated from semicircular canals of the frog (Rana esculenta) have been investigated using the whole-cell technique and intra and extracellular solutions designed to modify the basic properties of the Ca(2+) macrocurrent. With 1 mM ATP in the pipette solution, about 60% of the recorded cells displayed a Ca(2+) current constituted by a mix of an L and a drug-resistant (R2) component; the remaining 40% exhibited an additional drug-resistant fraction (R1), which inactivated in a Ca-dependent manner. If the pipette ATP was raised to 10 mM, cells exhibiting the R1 current fraction displayed an increase of both the R1 and L components by approximately 280 and approximately 70%, respectively, while cells initially lacking R1 showed a similar increase in the L component with R1 becoming apparent and raising up to a mean amplitude of approximately 44 pA.
View Article and Find Full Text PDFThe mechanisms that control chloride conductance (gCl) in the rat sympathetic neuron have been studied by the two-electrode voltage-clamp technique in mature, intact superior cervical ganglia in vitro. In addition to voltage dependence in the membrane potential range -120/-50 mV, gCl displays time- and activity-dependent regulation (sensitization). The resting membrane potential is governed by voltage-dependent gK and gCl, which determine values of cell input conductance ranging from 7 to 18 nS (full deactivation) to an upper value of about 130 nS (full activation and maximal gCl sensitization).
View Article and Find Full Text PDFThe complement of voltage-dependent K+ currents was investigated in hair cells of the frog crista ampullaris. The currents were recorded in transversal slices of the peripheral, intermediate and central regions of the crista by applying the patch clamp technique to cells located at different positions in the slices. Voltage-clamp recordings confirmed that cells located in each region have a distinctive complement of K+ channels.
View Article and Find Full Text PDFThe presence and functional role of inositol trisphosphate receptors (IP3R) was investigated by electrophysiology and immunohistochemistry in hair cells from the frog semicircular canal. Intracellular recordings were performed from single fibres of the posterior canal in the isolated, intact frog labyrinth, at rest and during rotation, in the presence of IP3 receptor inhibitors and drugs known to produce Ca2+ release from the internal stores or to increase IP3 production. Hair cell immunolabelling for IP3 receptor was performed by standard procedures.
View Article and Find Full Text PDFA biophysical description of the axotomized rat sympathetic neuron is reported, obtained by the two-electrode voltage-clamp technique in mature, intact superior cervical ganglia in vitro. Multiple aspects of neuron functioning were tested. Synaptic conductance activated by the whole presynaptic input decreased to 29% of the control value (0.
View Article and Find Full Text PDFThe effects of endogenous and exogenous Ca(2+) buffers on Ca(2+) current kinetics have been investigated by patch clamp in hair cells mechanically isolated from frog semicircular canals. This preparation displays at least three different Ca(2+) channel types: transient currents flow through a drug-resistant channel ("R1"), while non-inactivating channels sustain a steady, plateau current comprised of a large L component and a small drug-resistant fraction ("R2"). In the perforated-patch condition a large and stable Ca(2+) current was recorded, with all three components.
View Article and Find Full Text PDFRemarkable activity dependence was uncovered in the chloride conductance that operates in the subthreshold region of membrane potential, by using the two-microelectrode voltage-clamp technique in the mature and intact rat sympathetic neuron. Both direct and synaptic neuron tetanization (15 Hz, 10-s duration to saturate the response) resulted in a long-lasting (not less than 15 min) increase of cell input conductance (+70-150% 10 min after tetanus), accompanied by the onset of an inward current with the same time course. Both processes developed with similar properties in the postganglionic neuron when presynaptic stimulation was performed under current- or voltage-clamp conditions and were unaffected by external calcium on direct stimulation.
View Article and Find Full Text PDF