The efficacy of radiation treatment (RT) of head and neck squamous cell carcinoma (HNSCC) is limited by radioresistance and the toxicity of FDA approved radiosensitizers. In extension to our previous research where we demonstrated that telaglenastat (CB839) increased efficacy of RT in in vitro and in vivo HNSCC models, here, we examine the radiosensitizing effects of telaglenastat in comparison to cisplatin's, as cisplatin is currently the standard of care for concurrent therapy. Combination of telaglenastat with RT reduced tumor volume in a HNSCC patient derived xenograft mouse model.
View Article and Find Full Text PDFExtracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression . However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses.
View Article and Find Full Text PDFProton therapy (PT) is emerging as an effective and less toxic alternative to conventional X-ray-based photon therapy (XRT) for patients with advanced head and neck squamous cell carcinomas (HNSCCs) owing to its clustered dose deposition dosimetric characteristics. For optimal efficacy, cancer therapies, including PT, must elicit a robust anti-tumor response by effector and cytotoxic immune cells in the tumor microenvironment (TME). While tumor-derived exosomes contribute to immune cell suppression in the TME, information on the effects of PT on exosomes and anti-tumor immune responses in HNSCC is not known.
View Article and Find Full Text PDFIn vitro studies allow evaluation of normal or cancer cell responses to radiation, either alone or in combination with agents used to modify these biological responses. Ionizing radiation can be produced by a variety of particles and sources, with varying energy spectra, interaction probabilities, linear energy transfer, dose uniformity, dose rates, and delivery methods. Multiple radiation sources have been used to irradiate cells in the published literature.
View Article and Find Full Text PDFPersistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium.
View Article and Find Full Text PDFPurpose: The efficacy of cetuximab is poor in metastatic head and neck squamous cell carcinoma (HNSCC). Cetuximab initiates natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity, with resultant recruitment of immune cells and suppression of antitumor immunity. We hypothesized that adding an immune-checkpoint inhibitor (ICI) could overcome this and lead to an enhanced antitumor response.
View Article and Find Full Text PDFAge-associated microglial dysfunction contributes to the accumulation of amyloid-β (Aβ) plaques in Alzheimer's disease. Although several studies have shown age-related declines in the phagocytic capacity of myeloid cells, relatively few have examined phagocytosis of normally aged microglia. Furthermore, much of the existing data on aging microglial function have been generated in accelerated genetic models of Alzheimer's disease.
View Article and Find Full Text PDFBackground: Metformin slows tumor growth and progression in vitro, and in combination with chemoradiotherapy, resulted in high overall survival in patients with head and neck cancer squamous cell carcinoma (HNSCC) in our phase 1 clinical trial (NCT02325401). Metformin is also postulated to activate an antitumor immune response. Here, we investigate immunologic effects of metformin on natural killer (NK) and natural killer T cells, including results from two phase I open-label studies in patients with HNSCC treated with metformin (NCT02325401, NCT02083692).
View Article and Find Full Text PDFMacrophages are indispensable immune cells tasked at eliminating intracellular pathogens. (), one of the most virulent intracellular bacterial pathogens known to man, infects and resides within macrophages. While macrophages can be provoked by extracellular stimuli to inhibit and kill bacilli, these host defense mechanisms can be blocked by limiting nutritional metabolites, such as amino acids.
View Article and Find Full Text PDFBackground: Immunotherapy has emerged as a promising treatment modality for head and neck squamous cell carcinoma (HNSCC). Pembrolizumab, an anti-programmed death 1 antibody, is an immunotherapy agent currently approved for metastatic HNSCC and curative intent clinical trials. Although clinical responses to pembrolizumab are promising, many patients fail to respond.
View Article and Find Full Text PDFBackground: Developing novel strategies to overcome the immunosuppressive tumor microenvironment is a critically important area of cancer therapy research. Here, we assess the therapeutic potential of CD244 (2B4/signaling lymphocyte activation molecule family 4), an immunoregulatory receptor found on a variety of immune cells, including exhausted CD8 T cells, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs).
Methods: Using de-identified human tumor and blood samples from patients with head and neck squamous cell carcinoma (HNSCC) and HNSCC models in WT and CD244 mice, we assessed the therapeutic potential of CD244 using flow cytometry, RT-PCR, Luminex immunoassays and histopathological analyses.
Myriad studies have linked type I IFN to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). Although increased levels of type I IFN are found in patients with SLE, and IFN blockade ameliorates disease in many mouse models of lupus, its precise roles in driving SLE pathogenesis remain largely unknown. In this study, we dissected the effect of type I IFN sensing by CD4 T cells and B cells on the development of T follicular helper cells (T), germinal center (GC) B cells, plasmablasts, and antinuclear dsDNA IgG levels using the bm12 chronic graft-versus-host disease model of SLE-like disease.
View Article and Find Full Text PDFImpaired functionality of dendritic cells (DCs) significantly contributes to decreased adaptive immune responses in aged hosts. The expression of MHC-peptide on the DC surface is the critical first step in T cell priming, but few studies have addressed the effect of aging on Ag acquisition, processing, and presentation by DCs. In this study, we show that aged murine DCs were less efficient in the cross-presentation of cell-associated Ag and subsequently in the cross-priming of CD8(+) T cells than were their young counterparts.
View Article and Find Full Text PDFPresentation of antigenic peptides in MHC class II (MHCII) on dendritic cells (DCs) is the first step in the activation of antigen-specific CD4(+)T cells. The expression of surface MHCII-peptide complexes is tightly regulated as the frequency of MHCII-peptide complexes can affect the magnitude, as well as the phenotype of the ensuing CD4(+)T cell response. The surface MHCII-peptide levels are determined by the balance between expression of newly generated complexes, complex internalization, and their subsequent re-emergence or degradation.
View Article and Find Full Text PDFAdaptive immune responses to Ags released by dying cells play a critical role in the development of autoimmunity, allograft rejection, and spontaneous as well as therapy-induced tumor rejection. Although cell death in these situations is considered sterile, various reports have implicated type I IFNs as drivers of the ensuing adaptive immune response to cell-associated Ags. However, the mechanisms that underpin this type I IFN production are poorly defined.
View Article and Find Full Text PDFBackground: Dendritic cells (DCs) are important mediators of innate and adaptive immune responses, but the gene networks governing their lineage differentiation and maturation are poorly understood. To gain insight into the mechanisms that promote human DC differentiation and contribute to the acquisition of their functional phenotypes, we performed genome-wide base-resolution mapping of 5-methylcytosine in purified monocytes and in monocyte-derived immature and mature DCs.
Results: DC development and maturation were associated with a great loss of DNA methylation across many regions, most of which occurs at predicted enhancers and binding sites for known transcription factors affiliated with DC lineage specification and response to immune stimuli.