Iron is an essential element for physiological cellular processes, but is toxic in excess. Iron overload diseases are commonly associated with low bone mass. Increased bone resorption by osteoclasts as well as decreased bone formation by osteoblasts have been implicated in bone loss under iron overload conditions.
View Article and Find Full Text PDFPurpose: Bone is susceptible to fluctuations in iron homeostasis, as both iron deficiency and overload are linked to poor bone strength in humans. In mice, however, inconsistent results have been reported, likely due to different diet setups or genetic backgrounds. Here, we assessed the effect of different high and low iron diets on bone in six inbred mouse strains (C57BL/6J, A/J, BALB/cJ, AKR/J, C3H/HeJ, and DBA/2J).
View Article and Find Full Text PDFIron is an essential nutrient for all living organisms. Both iron deficiency and excess can be harmful. Bone, a highly metabolic active organ, is particularly sensitive to fluctuations in iron levels.
View Article and Find Full Text PDFPeriodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice.
View Article and Find Full Text PDFThe close association between rheumatoid arthritis (RA), sex, reproductive state, and stress has long linked prolactin (PRL) to disease progression. PRL has both proinflammatory and anti-inflammatory outcomes in RA, but responsible mechanisms are not understood. Here, we show that PRL modifies in an opposite manner the proinflammatory actions of IL-1β and TNF-α in mouse synovial fibroblasts in culture.
View Article and Find Full Text PDFPurpose Of Review: Osteoclasts are crucial for the dynamic remodeling of bone as they resorb old and damaged bone, making space for new bone. Metabolic reprogramming in these cells not only supports phenotypic changes, but also provides the necessary energy for their highly energy-consuming activity, bone resorption. In this review, we highlight recent developments in our understanding of the metabolic adaptations that influence osteoclast behavior and the overall remodeling of bone tissue.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis is an inflammatory joint disease in which synovial iron deposition has been described. Transferrin receptor 2 (Tfr2) represents a critical regulator of systemic iron levels. Loss of Tfr2 function in humans and mice results in iron overload.
View Article and Find Full Text PDFMany human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
June 2022
The term inflammatory arthritis defines a family of diseases, including rheumatoid arthritis (RA), caused by an overactive immune system, and influenced by host aspects including sex, reproductive state, and stress. Prolactin (PRL) is a sexually dimorphic, reproductive, stress-related hormone long-linked to RA under the general assumption that it aggravates the disease. However, this conclusion remains controversial since PRL has both negative and positive outcomes in RA that may depend on the hormone circulating levels, synthesis by joint tissues, and complex interactions at the inflammatory milieu.
View Article and Find Full Text PDFInflammatory arthritis defines a family of diseases influenced by reproductive hormones. Vasoinhibin, a fragment of the hormone prolactin (PRL), has antiangiogenic and proinflammatory properties. We recently showed that vasoinhibin reduces joint inflammation and bone loss in severe antigen-induced arthritis (AIA) by an indirect mechanism involving the inhibition of pannus vascularization.
View Article and Find Full Text PDFWell-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility.
View Article and Find Full Text PDFFerroportin (FPN) is the only known iron exporter. Mutations conferring resistance of FPN to hepcidin-mediated degradation cause the iron overload disorder hereditary hemochromatosis type 4. While iron overload is associated with low bone mass, the mechanisms involved are not completely understood.
View Article and Find Full Text PDFIncreased permeability and growth (angiogenesis) of blood vessels play a key role in joint swelling and pannus formation in inflammatory arthritis, a family of diseases influenced by reproductive hormones. The hormone prolactin (PRL) protects against joint inflammation, pannus formation, and bone destruction in adjuvant-induced arthritis and these effects may involve its proteolytic conversion to vasoinhibin, a PRL fragment that inhibits angiogenesis and vasopermeability. Here, we show that the intra-articular injection of an adeno-associated virus type-2 (AAV2) vector encoding vasoinhibin reduced joint inflammation, the hyperplasia, vascular density, and vasopermeability of the pannus, and the loss of bone in mice subjected to antigen-induced arthritis.
View Article and Find Full Text PDFBackground: Vasoinhibin, a protein derived from prolactin, regulates various vascular functions including endothelial cell survival. Of note, vasoinhibin is present in the central nervous system, where it triggers neuroendocrine and behavioral responses to stress. Moreover, vasoinhibin compromises nerve growth factor (NGF)-induced neurite outgrowth in primary sensory neurons of the peripheral nervous system.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2018
The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration, and its levels are high in the circulation of newborn infants, but whether PRL plays a role in neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 wk after birth, when liver growth lags behind body growth.
View Article and Find Full Text PDFBackground: Prolactin (PRL) reduces joint inflammation, pannus formation, and bone destruction in rats with polyarticular adjuvant-induced arthritis (AIA). Here, we investigate the mechanism of PRL protection against bone loss in AIA and in monoarticular AIA (MAIA).
Methods: Joint inflammation, trabecular bone loss, and osteoclastogenesis were evaluated in rats with AIA treated with PRL (via osmotic minipumps) and in mice with MAIA that were null (Prlr-/-) or not (Prlr+/+) for the PRL receptor.
Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood-retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood-retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG).
View Article and Find Full Text PDFThe levels of the hormone prolactin (PRL) are reduced in the circulation of patients with Type 2 diabetes and in obese children, and lower systemic PRL levels correlate with an increased prevalence of diabetes and a higher risk of metabolic syndrome. The secretion of anterior pituitary (AP) PRL in metabolic diseases may be influenced by the interplay between transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α), which inhibit and can stimulate AP PRL synthesis, respectively, and are known contributors to insulin resistance and metabolic complications. Here, we show that TGF-β and TNF-α antagonize the effect of each other on the expression and release of PRL by the GH4C1 lactotrope cell line.
View Article and Find Full Text PDFVasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier.
View Article and Find Full Text PDFThe hormone prolactin (PRL) regulates neuroendocrine and emotional stress responses. It is found in the hypothalamus, where the protein is partially cleaved to vasoinhibins, a family of N-terminal antiangiogenic PRL fragments ranging from 14 to 18kDa molecular masses, with unknown effects on the stress response. Here, we show that the intracerebroventricular administration of a recombinant vasoinhibin, containing the first 123 amino acids of human PRL that correspond to a 14kDa PRL, exerts anxiogenic and depressive-like effects detected in the elevated plus-maze, the open field, and the forced swimming tests.
View Article and Find Full Text PDFArthritic disorders are family of diseases that have existed since vertebrate life began. Their etiology is multifactorial with genetic, environmental, and gender factors driving chronic joint inflammation. Prolactin is a sexually dimorphic hormone in mammals that can act to both promote and ameliorate rheumatic diseases.
View Article and Find Full Text PDFChondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear.
View Article and Find Full Text PDF