Legume plants have the ability to establish a symbiotic relationship with soil bacteria known as rhizobia. The legume-rhizobium symbiosis results in the formation of symbiotic root nodules, where rhizobia fix atmospheric nitrogen. A host plant controls the number of symbiotic nodules to meet its nitrogen demands.
View Article and Find Full Text PDFThe (CEP) peptides play crucial roles in plant growth and response to environmental factors. These peptides were characterized as positive regulators of symbiotic nodule development in legume plants. However, little is known about the CEP peptide family in pea.
View Article and Find Full Text PDFMeasuring psychological attributes, such as motivation, typically involves rating scales, assuming that an attribute can be ordered, and that ratings represent this order. Previously, only the first assumption had been tested, albeit limited. First, we checked the ordinal structure of motivation, looking at whether people can establish transitive relations between motivation levels in pairwise comparisons; and we found different ordering patterns: strict transitive, weak transitive, changing order, and intransitivity.
View Article and Find Full Text PDFFront Artif Intell
September 2022
This work describes the development of a list of monolingual word alignments taken from parallel Russian simplification data. This word lists can be used in such lexical simplification tasks as rule-based simplification applications and lexically constrained decoding for neural machine translation models. Moreover, they constitute a valuable source of information for developing educational materials for teaching Russian as a second/foreign language.
View Article and Find Full Text PDFBackground: The paper presents datasets of plant species of two industrial cities Sterlitamak and Salavat (Republic of Bashkortostan) is presented. These cities are part of the Southern Bashkortostan urban agglomeration and are amongst the three largest in the Republic. The population of Sterlitamak is about 276,000.
View Article and Find Full Text PDFThe development of patterning materials ("resists") at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene-metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures.
View Article and Find Full Text PDFThe interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development.
View Article and Find Full Text PDFVarious plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.
View Article and Find Full Text PDFStudies on simple language and simplification are often based on datasets of texts, either for children or learners of a second language. In both cases, these texts represent an example of simple language, but simplification likely involves different strategies. As such, this data may not be entirely homogeneous in terms of text simplicity.
View Article and Find Full Text PDFBackground: Weeds are plants that, although not specially cultivated, grow and often adapt to growing in arable lands. They form an ecological variant of flora, as a historically-formed set of species growing on cultivated soils. For the rational use of the chemical and biological crop protection products and to produce safe and high-quality food, up-to-date data on the floristic diversity of weeds and the patterns of its geographical change are required.
View Article and Find Full Text PDFLegume plants form nitrogen-fixing nodules in symbiosis with soil bacteria rhizobia. The number of symbiotic nodules is controlled at the whole-plant level with autoregulation of nodulation (AON), which includes a shoot-acting CLV1-like receptor kinase and mobile CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION-related) peptides that are produced in the root in response to rhizobia inoculation. In addition to rhizobia-induced CLE peptides, nitrate-induced genes have been identified in and , which inhibited nodulation when overexpressed.
View Article and Find Full Text PDFFifteen hypermucoviscous isolates (13 bla-positive) obtained from 11 oncology patients were analyzed by whole genome sequencing, and selected isolates were assessed in a murine model of sepsis. ST395/K2 isolates harboring rmpA, rmpA2, peg-344, aerobactin, enterobactin, yersiniabactin, type I fimbriae, etc. displayed maximal virulence in the mouse lethality assay (LD = 10 CFU).
View Article and Find Full Text PDFStudying dynamic self-assembling systems in their native environment is essential for understanding the mechanisms of self-assembly and thereby exerting full control over these processes. Traditional ensemble-based analysis methods often struggle to reveal critical features of the self-assembly that occur at the single particle level. Here, we describe a label-free single-particle assay to visualize real-time self-assembly in aqueous solutions by interferometric scattering microscopy.
View Article and Find Full Text PDFWe report chemically fuelled out-of-equilibrium self-replicating vesicles based on surfactant formation. We studied the vesicles' autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self-replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium.
View Article and Find Full Text PDFCytokinin is an important regulator of symbiotic nodule development. Recently, KNOTTED1-LIKE HOMEOBOX 3 transcription factor (TF) was shown to regulate symbiotic nodule development possibly via the activation of cytokinin biosynthesis genes. However, the direct interaction between the KNOX3 TF and its target genes has not been investigated up to date.
View Article and Find Full Text PDFThe review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history.
View Article and Find Full Text PDFThe powerful electron accepting ability of fullerenes makes them ubiquitous components in biomimetic donor-acceptor systems that model the intermolecular electron transfer processes of Nature's photosynthetic center. Exploiting perylene diimides (PDIs) as components in cyclic host systems for the noncovalent recognition of fullerenes is unprecedented, in part because archetypal PDIs are also electron deficient, making dyad assembly formation electronically unfavorable. To address this, we report the strategic design and synthesis of a novel large, macrocyclic receptor composed of two covalently strapped electron-rich bis-pyrrolidine PDI panels, nicknamed the "Green Box" due to its color.
View Article and Find Full Text PDFCytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis s () genes was shown to be increased in response to rhizobial inoculation in and . In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis.
View Article and Find Full Text PDFBy addressing the challenge of controlling molecular motion, mechanically interlocked molecular machines are primed for a variety of applications in the field of nanotechnology. Specifically, the designed manipulation of communication pathways between electron donor and acceptor moieties that are strategically integrated into dynamic photoactive rotaxanes and catenanes may lead to efficient artificial photosynthetic devices. In this pursuit, a novel [3]rotaxane molecular shuttle consisting of a four-station bis-naphthalene diimide (NDI) and central C fullerene bis-triazolium axle component and two mechanically bonded ferrocenyl-functionalized isophthalamide anion binding site-containing macrocycles is constructed using an anion template synthetic methodology.
View Article and Find Full Text PDFWe have employed the scanning tunneling microscope break-junction technique to investigate the single-molecule conductance of a family of 5,15-diaryl porphyrins bearing thioacetyl (SAc) or methylsulfide (SMe) binding groups at the ortho position of the phenyl rings (S2 compounds). These ortho substituents lead to two atropisomers, cis and trans, for each compound, which do not interconvert in solution under ambient conditions; even at high temperatures, isomerization takes several hours (half-life 15 h at 140 °C for SAc in CClD). All the S2 compounds exhibit two conductance groups, and comparison with a monothiolated (S1) compound shows the higher group arises from a direct Au-porphyrin interaction.
View Article and Find Full Text PDFRedox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.
View Article and Find Full Text PDFChanges in the general circulation of the atmosphere have been taking place during the latter part of the twentieth century and the early part of the twenty-first century. In the Belgorod region of Southwest Russia, this has been manifested in the more frequent occurrence of stationary anticyclones, including those referred to as blocking anticyclones, especially during the summer season. Also, there has been a general increase in regional temperatures during the growing season over the period mentioned above, and combined with the more frequent occurrence of anticyclones has led to less humid conditions.
View Article and Find Full Text PDFWe report an approach, named chemTEM, to follow chemical transformations at the single-molecule level with the electron beam of a transmission electron microscope (TEM) applied as both a tunable source of energy and a sub-angstrom imaging probe. Deposited on graphene, disk-shaped perchlorocoronene molecules are precluded from intermolecular interactions. This allows monomolecular transformations to be studied at the single-molecule level in real time and reveals chlorine elimination and reactive aryne formation as a key initial stage of multistep reactions initiated by the 80 keV e-beam.
View Article and Find Full Text PDF