Micro- and nanoparticles of chitosan and carboxymethyl chitosan were synthesized, both with and without ascorbic acid. Methods were developed to form complexes between these micro- and nanoparticles and plant proteases-ficin, papain, and bromelain. It was demonstrated that the activity of cysteine protease complexes with carboxymethyl chitosan micro- and nanoparticles was higher compared to those with chitosan micro- and nanoparticles.
View Article and Find Full Text PDFChitosan takes second place of the most abundant polysaccharides naturally produced by living organisms. Due to its abundance and unique properties, such as its polycationic nature, ability to form strong elastic porous films, and antibacterial potential, it is widely used in the food industry and biomedicine. However, its low solubility in both water and organic solvents makes its application difficult.
View Article and Find Full Text PDFThe investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation.
View Article and Find Full Text PDFIn the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa.
View Article and Find Full Text PDFThis study investigates the features of interactions between cysteine proteases (bromelain, ficin, and papain) and a graft copolymer of carboxymethyl cellulose sodium salt with -vinylimidazole. The objective is to understand the influence of this interactions on the proteolytic activity and stability of the enzymes. The enzymes were immobilized through complexation with the carrier.
View Article and Find Full Text PDFThe present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and ,-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates' formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme.
View Article and Find Full Text PDFEnzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, -(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and -(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively).
View Article and Find Full Text PDFBriefly, 2-(4-Acetamido-2-sulfanilamide) chitosan, which is a chitosan water-soluble derivative, with molecular weights of 200, 350, and 600 kDa, was successfully synthesized. The immobilization of ficin, papain, and bromelain was carried out by complexation with these polymers. The interaction mechanism of 2-(4-acetamido-2-sulfanilamide) chitosan with bromelain, ficin, and papain was studied using FTIR spectroscopy.
View Article and Find Full Text PDFThe aim of this work is to research the interactions of water-soluble nitrogen-containing copolymers with essential amino acids in aqueous media. For this, poly(-vinylformamide---vinylimidazole) and poly(-vinylcaprolactam---vinylimidazole) random copolymers were synthesized by free radical polymerization. The products obtained are characterized by GPC, DLS, and FTIR.
View Article and Find Full Text PDFThis work aims to synthesize graft copolymers of chitosan and -vinylimidazole (VI) with different compositions to be used as matrices for the immobilization of cysteine proteases-bromelain, ficin, and papain. The copolymers are synthesized by free radical solution copolymerization with a potassium persulfate-sodium metabisulfite blend initiator. The copolymers have a relatively high frequency of grafting and yields.
View Article and Find Full Text PDF