Analyzing the composition of animal hair fibers in textiles is crucial for ensuring the quality of yarns and fabrics made from animal hair. Among others, Fourier transform infrared (FT-IR) spectroscopy is a technique that identifies vibrations associated with chemical bonds, including those found in amino acid groups. Cashmere, mohair, yak, camel, alpaca, vicuña, llama, and sheep hair fibers were analyzed via attenuated total reflection FT-IR (ATR FT-IR) spectroscopy and scanning electron microscopy techniques aiming at the discrimination among them to identify possible commercial frauds.
View Article and Find Full Text PDFThe textile industry is a pillar of the manufacturing sector worldwide, but it still represents a significantly polluting production sector since it is energy-, water- and natural resource-intensive. Herein, waste wool that did not meet the technical requirements to be used for yarns and fabrics was recovered first to prepare materials for wastewater remediation, specifically for phosphate removal. The wool underwent an alkaline treatment, eventually saturated with FeCl and then left at room temperature or thermally treated to induce crosslinking/stabilisation, obtaining adsorbent panels.
View Article and Find Full Text PDFThe frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical-chemical features were related to the crosslinking effect caused by Cu.
View Article and Find Full Text PDFThis study proposes a simple approach for the recognition of polyamide 6.9 samples differing in impurity amounts and viscosities (modulated during the synthesis), which are parameters plausibly variable in polymers' manufacturing processes. Infrared spectroscopy (ATR-FTIR) was combined with chemometrics, applying statistical methods to experimental data.
View Article and Find Full Text PDFIn the present work, the acid-catalyzed interesterification of glyceryl trioctanoate (GTO) with ethyl acetate was investigated as a model reaction for the one-step production of biofuel and its additives. The activity of heterogeneous acid catalysts, such as silica-based propyl-sulfonic ones, was evaluated. Propyl-sulfonic groups were grafted on both amorphous and mesoporous silica oxide (SBA-15, KIT-6) using different functionalization processes and characterized by N adsorpion-desorption isotherm (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and potentiometric titration.
View Article and Find Full Text PDFThe Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge.
View Article and Find Full Text PDFPolyethylene (PE) is the most abundant non-degradable plastic waste, posing a constant and serious threat to the whole ecosystem. In the present study, the fungal community of plastic wastes contaminating a landfill soil has been studied. After 6 months of enrichment, 95 fungi were isolated, mostly belonging to the Ascomycota phylum.
View Article and Find Full Text PDFSoybean hulls are one of the by-products of soybean crushing and find application mainly in the animal feed sector. Nevertheless, soybean hulls have been already exploited as source of peroxidase (soybean peroxidase, SBP), an enzyme adopted in a wide range of applications such as bioremediation and wastewater treatment, biocatalysis, diagnostic tests, therapeutics and biosensors. In this work, the soybean hulls after the SBP extraction, destined to become a putrescible waste, were recovered and employed as adsorbents for water remediation due to their cellulose-based composition.
View Article and Find Full Text PDFBiowaste-derived substances isolated from green compost (BBS-GC) are environmentally friendly reactants similar to humic substances, which contain multiple functionalities, that are suitable for adsorbing different kinds of pollutants in wastewater. Herein, sodium alginate (derived from brown algae) cross-linked with both Ca ions and BBS-GC in the form of hydrogels and dried films are proposed as green, easy-to-form, and handleable materials for tertiary water treatments. The results show that both hydrogels and films are mechanically stable and can effectively remove differently charged dyes through an adsorption mechanism that can be described by the Freundlich model.
View Article and Find Full Text PDFThe growing utilization of renewable and residual biomasses for environmental preservation and remediation are important goals to be pursued to minimize the environmental impact of human activities. In this paper, sodium alginate (derived from brown algae) was crosslinked using chitosan (mainly derived from the exoskeleton of crustaceans) in the presence of biowaste-derived substances isolated from green compost (BBS-GC), to produce hydrogels and dried films. The obtained materials were tested as adsorbents for wastewater remediation.
View Article and Find Full Text PDFUrban wastes are a potential source of environment contamination, especially when they are not properly disposed. Nowadays, researchers are finding innovative solutions for recycling and reusing wastes in order to favour a sustainable development from the viewpoint of circular economy. In this context, the lignin-like fraction of biomass derived from Green Compost is a cost-effective source of soluble Bio-Based Substances (BBS-GC), namely complex macromolecules/supramolecular aggregates characterized by adsorbing and photosensitizing properties.
View Article and Find Full Text PDF