Grafting of polyethylene glycol (PEG) to ultrasmall photoluminescent silicon dots (SiDs) is expected to improve and expand the applications of these particles to aqueous environments and biological systems. Herein we report a novel one-pot synthesis of robust, highly water compatible PEG-coated SiDs (denoted as PEG-SiDs) of (3.3 ± 0.
View Article and Find Full Text PDFThe delivery capacity and mechanical stability of calcium phosphate (CaP) coated 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) liposomes free and adsorbed on bacterial surface was investigated introducing either acridine orange (AO) or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin (TMP) in the aqueous core of the liposomes. The obtained nanomaterials were thoroughly characterized by electron and optical microscopy and by fluorescence techniques. Distribution of the AO and TMP molecules between the aqueous liposomes core and the outer solution was demonstrated by the band shifts and broadening of the excitation-emission matrices and the modified Stern-Volmer model for fluorescence quenching.
View Article and Find Full Text PDFSilicon nanoparticles synthesized by two different methods were surface modified with 3-mercaptopropyltrimethoxysilane. The particles of ~2 nm size exhibit photoluminescence (PL) in the UV-Vis range of the spectrum. The most intense PL band at 430 nm with an emission lifetime of 1-2 ns is attributed to the presence of the surface defects Si-O-Si, generated after anchoring the organic molecule onto the interface.
View Article and Find Full Text PDFThe reaction of three chloronicotinoid insecticides, namely Imidacloprid (IMD), Thiacloprid (THIA) and Acetamiprid (ACT), with carbonate radicals (CO·₃⁻) was investigated. The second order rate constants (4 ± 1) × 10⁶, (2.8 ± 0.
View Article and Find Full Text PDF