Publications by authors named "Maria Labandeira-Rey"

Article Synopsis
  • The research focuses on peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) as a new strategy to combat multidrug-resistant infections caused by a virulent pathogen affecting hospitalized patients, especially those with cystic fibrosis.
  • PPMOs can significantly inhibit the growth of various clinical strains and show enhanced effectiveness when combined with a substance called polymyxin B nonapeptide, alongside preventing and reducing biofilm formation.
  • Combining PPMOs with traditional antibiotics, particularly tobramycin, proves to be highly effective in reducing bacterial burden in infected mice, highlighting PPMOs as a promising solution to antibiotic resistance challenges.
View Article and Find Full Text PDF

There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media.

View Article and Find Full Text PDF

Unlabelled: To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog.

View Article and Find Full Text PDF

Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R.

View Article and Find Full Text PDF

Young adult chinchillas were atraumatically inoculated with Moraxella catarrhalis via the nasal route. Detailed histopathologic examination of nasopharyngeal tissues isolated from these M. catarrhalis-infected animals revealed the presence of significant inflammation within the epithelium.

View Article and Find Full Text PDF

Haemophilus ducreyi 35000HP contains a homolog of the CpxRA 2-component signal transduction system, which controls the cell envelope stress response system in other gram-negative bacteria and regulates some important H. ducreyi virulence factors. A H.

View Article and Find Full Text PDF

The Haemophilus ducreyi 35000HP genome encodes a homolog of the CpxRA two-component cell envelope stress response system originally characterized in Escherichia coli. CpxR, the cytoplasmic response regulator, was shown previously to be involved in repression of the expression of the lspB-lspA2 operon (M. Labandeira-Rey, J.

View Article and Find Full Text PDF

Haemophilus ducreyi 35000HP contains a homologue of the luxS gene, which encodes an enzyme that synthesizes autoinducer 2 (AI-2) in other gram-negative bacteria. H. ducreyi 35000HP produced AI-2 that functioned in a Vibrio harveyi-based reporter system.

View Article and Find Full Text PDF

The LspA1, LspA2, and LspB proteins of Haemophilus ducreyi comprise a two-partner secretion system that has been shown to be necessary for H. ducreyi to inhibit phagocytosis by immune cells in vitro. Inactivation of lspA1 resulted in increased levels of LspA2, suggesting that these two proteins are differentially controlled (C.

View Article and Find Full Text PDF

The Staphylococcus aureus Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by strains epidemiologically associated with the current outbreak of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and with the often-lethal necrotizing pneumonia. To investigate the role of PVL in pulmonary disease, we tested the pathogenicity of clinical isolates, isogenic PVL-negative and PVL-positive S. aureus strains, as well as purified PVL, in a mouse acute pneumonia model.

View Article and Find Full Text PDF

Borrelia burgdorferi, the aetiological agent of Lyme disease, utilizes multiple adhesins to interact with both the arthropod vector and mammalian hosts it colonizes. One such adhesive molecule is a surface-exposed fibronectin-binding lipoprotein, designated BBK32. Previous characterization of BBK32-mediated fibronectin binding has been limited to biochemical analyses due to the difficulty in mutagenizing infectious isolates of B.

View Article and Find Full Text PDF

The 25-kb linear plasmid lp25 and one of the 28-kb linear plasmids (lp28-1) are required for experimental infection in Borrelia burgdorferi, the etiologic agent of Lyme disease. The loss of these plasmids either eliminates infectivity (lp25) or significantly increases the 50% infective dose during a 2-week infection period (lp28-1). This study assessed the kinetics of bacterial dissemination in C3H/HeN mice infected with B.

View Article and Find Full Text PDF