Publications by authors named "Maria L Zapp"

The gene therapy field has been galvanized by two technologies that have revolutionized treating genetic diseases: vectors based on adeno-associated viruses (AAVs), and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas gene-editing tools. When combined into one platform, these safe and broadly tropic biotherapies can be engineered to target any region in the human genome to correct genetic flaws. Unfortunately, few investigations into the design compatibility of CRISPR components in AAV vectors exist.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV)-based gene therapy has entered a phase of clinical translation and commercialization. Despite this progress, vector integrity following production is often overlooked. Compromised vectors may negatively impact therapeutic efficacy and safety.

View Article and Find Full Text PDF

Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53-) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR.

View Article and Find Full Text PDF

We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNA(Ser)UCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) silence transposons in animal germ cells. piRNAs are thought to derive from long transcripts spanning transposon-rich genomic loci and to direct an autoamplification loop in which an antisense piRNA, bound to Aubergine or Piwi protein, triggers production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn, the new piRNA is envisioned to produce a second antisense piRNA.

View Article and Find Full Text PDF

At the FASEB summer research conference on "Arf Family GTPases", held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological functions and possible connections to pathogenesis. Nearly 100 researchers were contacted to generate a consensus nomenclature for human ArfGAPs.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster.

View Article and Find Full Text PDF

An important goal of contemporary HIV type 1 (HIV-1) research is to identify cellular cofactors required for viral replication. The HIV-1 Rev protein facilitates the cytoplasmic accumulation of the intron-containing viral gag-pol and env mRNAs and is required for viral replication. We have previously shown that a cellular protein, human Rev-interacting protein (hRIP), is an essential Rev cofactor that promotes the release of incompletely spliced HIV-1 RNAs from the perinuclear region.

View Article and Find Full Text PDF

Human immunodeficiency virus Rev facilitates the cytoplasmic accumulation of viral RNAs that contain a Rev binding site. A human Rev-interacting protein (hRIP) was originally identified based on its ability to interact with the Rev nuclear export signal (NES) in yeast two-hybrid assays. To date, however, the function of hRIP and a role for hRIP in Rev-directed RNA export have remained elusive.

View Article and Find Full Text PDF