Silk fibroin nanoparticles (SFNs) have been widely investigated for drug delivery, but their clinical application still faces technical (large-scale and GMP-compliant manufacturing), economic (cost-effectiveness in comparison to other polymer-based nanoparticles), and biological (biodistribution assessments) challenges. To address biodistribution challenge, we provide a straightforward desolvation method (in acetone) to produce homogeneous SFNs incorporating increasing amounts of FeO (SFNs-Fe), detectable by Magnetic Resonance Imaging (MRI), and loaded with curcumin as a model lipophilic drug. SFNs-Fe were characterized by a homogeneous distribution of the combined materials and showed an actual FeO loading close to the theoretical one.
View Article and Find Full Text PDFCannabigerol (CBG), a cannabinoid from L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation through biomimetic membranes performed with CBG and CBD in the presence and in the absence of a randomly substituted methyl-β-cyclodextrin (MβCD), a new CBG extemporaneous emulgel (oil-in-gel emulsion) formulation was developed by spray-drying.
View Article and Find Full Text PDFA protocol for the encapsulation in sodium alginate of granulosa cells in primary culture and coculture of oocyte-cumulus complexes is reported. Sodium alginate forms strong gels when jellified with barium ions, allowing the self-organization of cells into a 3D structure. This method of encapsulation is simple and cheap, allowing the culture of cells in a three-dimensional fashion.
View Article and Find Full Text PDFBioprinting offers new opportunities to obtain reliable 3Dmodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels.
View Article and Find Full Text PDFNeurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury.
View Article and Find Full Text PDFThe existence of more than thirty stress-strain equations, including those proposed by the government regulations in many countries, seems to indicate that additional, unifying, and at the same time generalizing research is necessary for this subject. Many expressions can be found to set or determine the initial modulus of elasticity of concrete, i.e.
View Article and Find Full Text PDFScaffolds for bone tissue engineering should be osteoinductive, osteoconductive, biocompatible, biodegradable, and, at the same time, exhibit proper mechanical properties. The present study investigated the mechanical properties of a coprinted hybrid scaffold made of polycaprolactone (PCL) and an alginate-based hydrogel, which was conceived to possess a double function of in vivo bio-integration (due to the ability of the hydrogel to release lyosecretome, a freeze-dried formulation of mesenchymal stem cell secretome with osteoinductive and osteoconductive properties) and withstanding loads (due to the presence of polycaprolactone, which provides mechanical resistance). To this end, an in-silico study was conducted to predict mechanical properties.
View Article and Find Full Text PDFDeveloping drug delivery systems to target cytotoxic drugs directly into tumor cells is still a compelling need with regard to reducing side effects and improving the efficacy of cancer chemotherapy. In this work, silk fibroin nanoparticles (SFNs) have been designed to load a previously described cytotoxic compound (NDI-1) that disrupts the cell cycle by specifically interacting with non-canonical secondary structures of DNA. SFNs were then functionalized on their surface with cyclic pentapeptides incorporating the Arg-Gly-Asp sequence (RGDs) to provide active targeting toward glioma cell lines that abundantly express ανβ3 and ανβ5 integrin receptors.
View Article and Find Full Text PDFInitiation and progression of intervertebral disk degeneration are linked to oxidative stress, with reactive oxygen species being a key factor. Therefore, as a potentially novel approach able to regenerate the damaged intervertebral disk, this work aimed to prepare an "active per sé" drug delivery system by combining sericin and crocetin: both are bioactive compounds with antioxidant, anti-inflammatory, immunomodulant and regenerative properties. In detail, sericin nanoparticles were prepared using crocetin as a cross-linker; then, the nanoparticle dispersions were dried by spray drying as it is (NP), with an excess of sericin (NPS) or crocin/crocetin (NPMix), obtaining three microparticle formulations.
View Article and Find Full Text PDFSodium alginate (SA)-based hydrogels are often employed as bioink for three-dimensional (3D) scaffold bioprinting. They offer a suitable environment for cell proliferation and differentiation during tissue regeneration and also control the release of growth factors and mesenchymal stem cell secretome, which is useful for scaffold biointegration. However, such hydrogels show poor mechanical properties, fast-release kinetics, and low biological performance, hampering their successful clinical application.
View Article and Find Full Text PDFMPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia.
View Article and Find Full Text PDFSpray congealing technique was exploited to produce solid lipid microparticles (SLMp) loaded with a highly water-soluble drug (metoclopramide hydrochloride) dissolved in the aqueous phase of a water in oil (W/O) emulsion. The use of an emulsion as starting material for a spray congealing treatment is not so frequent. Moreover, for this application, a W/O emulsion with a drug dissolved in water is a totally novel path.
View Article and Find Full Text PDFRecently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium.
View Article and Find Full Text PDFInt J Mol Sci
April 2022
Recently, we proposed a Good Manufacturing Practice (GMP)-compliant production process for freeze-dried mesenchymal stem cell (MSC)-secretome (lyo-secretome): after serum starvation, the cell supernatant was collected, and the secretome was concentrated by ultrafiltration and freeze-dried, obtaining a standardized ready-to-use and stable powder. In this work, we modified the type of human platelet lysate (HPL) used as an MSC culture supplement during the lyo-secretome production process: the aim was to verify whether this change had an impact on product quality and also whether this new procedure could be validated according to GMP, proving the process robustness. MSCs were cultured with two HPLs: the standard previously validated one (HPL-E) and the new one (HPL-S).
View Article and Find Full Text PDFIn recent years, mesenchymal stromal cells (MSCs) have shown promise as a therapy in treating musculoskeletal diseases, and it is currently believed that their therapeutic effect is mainly related to the release of proteins and extracellular vesicles (EVs), known as secretome. In this work, three batches of canine MSC-secretome were prepared by standardized processes according to the current standard ISO9001 and formulated as a freeze-dried powder named Lyosecretome. The final products were characterized in protein and lipid content, EV size distribution and tested to ensure the microbiological safety required for intraarticular injection.
View Article and Find Full Text PDFTissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth.
View Article and Find Full Text PDFSurgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment.
View Article and Find Full Text PDFTitanium is one of the most frequently used materials in bone regeneration due to its good biocompatibility, excellent mechanical properties, and great osteogenic performance. However, osseointegration with host tissue is often not definite, which may cause implant failure at times. The present study investigates the capacity of the mesenchymal stem cell (MSC)-secretome, formulated as a ready-to-use and freeze-dried medicinal product (the Lyosecretome), to promote the osteoinductive and osteoconductive properties of titanium cages.
View Article and Find Full Text PDFIn the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production.
View Article and Find Full Text PDFTo date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to design a strategy to prevent a second wave of late mortality associated with COVID-19 PF as a long-term consequence of such a devastating pandemic.
View Article and Find Full Text PDF