The cardiac endothelium plays a crucial role in the development of a functional heart. However, the precise identification of the endocardial precursors and the mechanisms they require for their role in heart morphogenesis are not well understood. Using in vivo and in vitro cell fate tracing concomitant with specific cell ablation and embryonic heart transplantation studies, we identified a unique set of precursors which possess hemogenic functions and express the stem cell leukemia (SCL) gene driven by its 5' enhancer.
View Article and Find Full Text PDFPodocyte depletion plays a major role in focal segmental glomerular sclerosis (FSGS). Because cells of the renin lineage (CoRL) serve as adult podocyte and parietal epithelial cell (PEC) progenitor candidates, we generated Ren1cCre/R26R-ConfettiTG/WT and Ren1dCre/R26R-ConfettiTG/WT mice to determine CoRL clonality during podocyte replacement. Four CoRL reporters (GFP, YFP, RFP, CFP) were restricted to cells in the juxtaglomerular compartment (JGC) at baseline.
View Article and Find Full Text PDFThe renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown.
View Article and Find Full Text PDFEnzymatic cleavage of angiotensinogen by renin represents the critical rate-limiting step in the production of angiotensin II, but the mechanisms regulating the initial expression of the renin gene remain incomplete. The purpose of this study is to unravel the molecular mechanism controlling renin expression. We identified a subset of nuclear receptors that exhibited an expression pattern similar to renin by reanalyzing a publicly available microarray data set.
View Article and Find Full Text PDFRenin progenitors appear early and are found in multiple tissues throughout the embryo. Besides their well known role in blood pressure and fluid homeostasis, renin progenitors participate in tissue morphogenesis, repair, and regeneration, and may integrate immune and endocrine responses. In the bone marrow, renin cells offer clues to understand normal and neoplastic hematopoiesis.
View Article and Find Full Text PDFThe Notch signaling pathway is required to maintain renin expression within juxtaglomerular (JG) cells. However, the specific ligand which activates Notch signaling in renin-expressing cells remains undefined. In this study, we found that among all Notch ligands, Jagged1 is differentially expressed in renin cells with higher expression during neonatal life.
View Article and Find Full Text PDFThe close relationship between endothelial and hematopoietic precursors during early development of the vascular system suggested the possibility of a common yet elusive precursor for both cell types. Whether similar or related progenitors for endothelial and hematopoietic cells are present during organogenesis is unclear. Using inducible transgenic mice that specifically label endothelial and hematopoietic precursors, we performed fate-tracing studies combined with colony-forming assays and crosstransplantation studies.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2015
Renin, the key regulated enzyme of the renin-angiotensin system regulates blood pressure, fluid-electrolyte homeostasis, and renal morphogenesis. Whole body deletion of the renin gene results in severe morphological and functional derangements, including thickening of renal arterioles, hydronephrosis, and inability to concentrate the urine. Because renin is found in vascular and tubular cells, it has been impossible to discern the relative contribution of tubular versus vascular renin to such a complex phenotype.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2015
We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression-together with renin-is progressively restricted in the kidney arteries toward the glomerulus.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2015
The development of the kidney arterioles is poorly understood. Mature arterioles contain several functionally and morphologically distinct cell types, including smooth muscle, endothelial, and juxtaglomerular cells, and they are surrounded by interconnected pericytes, fibroblasts, and other interstitial cells. We have shown that the embryonic kidney possesses all of the necessary precursors for the development of the renal arterial tree, and those precursors assemble in situ to form the kidney arterioles.
View Article and Find Full Text PDFObstructive nephropathy, the leading cause of kidney failure in children, can be anatomic or functional. The underlying causes of functional hydronephrosis are not well understood. miRNAs, which are small noncoding RNAs, regulate gene expression at the post-transcriptional level.
View Article and Find Full Text PDFMesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2015
Recombination signal binding protein for Ig-κJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge.
View Article and Find Full Text PDFThe circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice).
View Article and Find Full Text PDFThe cell of origin and triggering events for leukaemia are mostly unknown. Here we show that the bone marrow contains a progenitor that expresses renin throughout development and possesses a B-lymphocyte pedigree. This cell requires RBP-J to differentiate.
View Article and Find Full Text PDFRenin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated.
View Article and Find Full Text PDFApart from their endocrine functions renin-expressing cells play an important functional role as mural cells of the developing preglomerular arteriolar vessel tree in the kidney. The recruitment of renin-expressing cells from the mesenchyme to the vessel wall is not well understood. Assuming that it may follow more general lines of pericyte recruitment to endothelial tubes we have now investigated the relevance of the platelet-derived growth factor (PDGF)-B-PDGFR-β signaling pathway in this context.
View Article and Find Full Text PDFWorld J Nephrol
February 2013
Aim: To investigate renin expression in pericytes during normal kidney development and after deletion of angiotensinogen, the precursor for all angiotensins.
Methods: We examined the distribution of renin expressing cells by immunoshistochemistry in the interstitial compartment of wild type (WT) and angiotensinogen deficient (AGT -/-) mice at different developmental stages from embryonic day 18 (E18: WT, n = 4; AGT -/-, n = 5) and at day 1 (P1: WT, n = 5; AGT -/-, n = 5), 5 (P5: WT, n = 7; AGT -/-, n = 8), 10 (P10: WT, n = 3; AGT -/-, n = 5), 21 (P21: WT, n = 7; AGT -/-, n = 5), 45 (P45: WT, n = 3; AGT -/-, n = 3), and 70 (P70: WT, n = 2; AGT -/-, n = 2) of postnatal life. We quantified the number of pericytes positive for renin at all the developmental stages mentioned above and compared the results of AGT -/- mice to their WT counterparts.
States of low perfusion pressure of the kidney associate with hyperplasia or expansion of renin-producing cells, but it is unknown whether hypoxia-triggered genes contribute to these changes. Here, we stabilized hypoxia-inducible transcription factors (HIFs) in mice by conditionally deleting their negative regulator, Vhl, using the Cre/loxP system with renin-1d promoter-driven Cre expression. Vhl (−/−(REN)) mice were viable and had normal BP.
View Article and Find Full Text PDFWe examined the antihypertensive effects of valsartan, aliskiren, or both drugs combined on circulating, cardiac, and renal components of the renin-angiotensin system in congenic mRen2.Lewis hypertensive rats assigned to: vehicle (n=9), valsartan (via drinking water, 30 mg/kg per day; n=10), aliskiren (SC by osmotic mini-pumps, 50 mg/kg per day; n=10), or valsartan (30 mg/kg per day) combined with aliskiren (50 mg/kg per day; n=10). Arterial pressure and heart rate were measured by telemetry before and during 2 weeks of treatment; trunk blood, heart, urine, and kidneys were collected for measures of renin-angiotensin system components.
View Article and Find Full Text PDFIn response to a homeostatic threat circulating renin increases by increasing the number of cells expressing renin by dedifferentiation and re-expression of renin in arteriolar smooth muscle cells (aSMCs) that descended from cells that expressed renin in early life. However, the mechanisms that govern the maintenance and reacquisition of the renin phenotype are not well understood. The cAMP pathway is important for renin synthesis and release: the transcriptional effects are mediated by binding of cAMP responsive element binding protein with its co-activators, CBP and p300, to the cAMP response element in the renin promoter.
View Article and Find Full Text PDFThe kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life.
View Article and Find Full Text PDFRenin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney.
View Article and Find Full Text PDF