In hypertrophic cardiomyopathy (HCM), late gadolinium enhancement (LGE) extent ≥15% of left ventricular mass is considered a prognostic risk factor. LGE extent increases over time and the clinical role of the progression of LGE over time (LGE rate) was not prospectively evaluated. We sought to evaluate the prognostic role of the LGE rate in HCM.
View Article and Find Full Text PDFWe sought to compare native T1 mapping to conventional late gadolinium enhancement (LGE) and T2-STIR techniques in a cohort of consecutive patients undergoing cardiac MRI (CMR). CMR was performed in 323 patients, 206 males (64%), mean age 54 ± 8 years, and in 27 age- and sex- matched healthy controls. In T2-STIR images, myocardial hyperintensity suggesting edema was found in 41 patients (27%).
View Article and Find Full Text PDFLate gadolinium enhancement (LGE) is the most relevant tool of cardiac magnetic resonance for tissue characterization, and it plays a pivotal role for diagnostic and prognostic assessment of cardiomyopathies. The pattern of presentation of LGE allows differential diagnosis between ischaemic and non-ischaemic heart disease with high diagnostic accuracy, and among different cardiomyopathies, specific presentation of LGE may help to make a diagnosis. Late gadolinium enhancement may be caused by conditions that significantly increase the interstitial space or, less frequently, that slow down Gd exit, like myocardial fibrosis.
View Article and Find Full Text PDFFabry disease (FD) is an X-linked inheritable storage disease caused by a deficiency of alpha-galactosidase causing lysosomal overload of sphingolipids. FD cardiomyopathy is characterized by left ventricular (LV) hypertrophy and should be considered in differential diagnosis with all the other causes of LV hypertrophy. An early diagnosis of FD is very important because the enzyme replacement therapy (ERT) may change the fate of patients by blocking both cardiac and systemic involvement and improving prognosis.
View Article and Find Full Text PDFThe aim of this study is to identify the best predictors of mortality among clinical, biochemical and advanced echocardiographic parameters in acute heart failure (AHF) patients admitted to coronary care unit (CCU). AHF is a clinical condition characterized by high mortality and morbidity. Several studies have investigated the potential prognostic factors that could help the risk assessment of cardiovascular events in HF patients, but at the moment it has not been found a complete prognostic score (including clinical, laboratory and echocardiographic parameters), univocally used for AHF patients.
View Article and Find Full Text PDFNitrite, a physiological nitric oxide (NO) storage form and an alternative way for NO generation, affects numerous biological processes through NO-dependent and independent pathways, including the S-nitrosylation of thiol-containing proteins. Mechanisms underlying these phenomena are not fully understood. The purpose of this study was to analyse in the rat heart (as prototype of mammalian heart) whether nitrite affects S-nitrosylation of cardiac proteins and the potential targets for S-nitrosylation.
View Article and Find Full Text PDFPostconditioning (PostC) modifies the early post-ischemic pH, redox environment, and activity of enzymes. We hypothesized that early acidosis in PostC may affect superoxide dismutase (SOD) and catalase (CAT) activities, may reduce 3-nitrotyrosine (3-NT) protein levels, and may increase S-nitrosylated (SNO) protein levels, thus deploying its protective effects. To verify this hypothesis, we studied the early (7(th) min) and late (120(th) min) phases of reperfusion (a) endogenous SOD and CAT activities and (b) 3-NT protein levels and SNO protein levels.
View Article and Find Full Text PDFRoot extract of liquorice is traditionally used to treat several diseases. Liquorice-derived constituents present several biological actions. In particular, glycyrrhizin and its aglycone, glycyrrhetinic acid, exhibit well-known cardiovascular properties.
View Article and Find Full Text PDFThe circulating anion nitrite (NO(2)(-)) has long been considered an inert oxidative metabolite of nitric oxide (NO). Over the last decade several studies have identified inorganic nitrite as a key player in many biological processes because it acts both as a principal storage source of NO and as a signalling molecule distinct from its link with NO. This new field of research involves the exploration of the molecular, biochemical, and physiological activities of nitrite under a variety of physiological and pathophysiological states.
View Article and Find Full Text PDF