Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats.
View Article and Find Full Text PDFHumanin (HN) is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr), a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells.
View Article and Find Full Text PDFEstrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs.
View Article and Find Full Text PDFBackground: Estrogens are recognized modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that plays an important role in tissue homeostasis modulating cell proliferation, differentiation and death. We previously demonstrated that TNF-α-induced apoptosis of anterior pituitary cells from female rats is estrogen-dependent and predominant in cells from rats at proestrus when estradiol levels are the highest.
View Article and Find Full Text PDFBackground: Estrogens are recognized as acting as modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals, thus participating in anterior pituitary homeostasis during the estrous cycle. The balance of pro- and antiapoptotic proteins of the Bcl-2 family is known to regulate cell survival and apoptosis.
Aims: In order to understand the mechanisms underlying apoptosis during the estrous cycle, we evaluated the expression of the proapoptotic protein Bax and the antiapoptotic proteins Bcl-2 and Bcl-xL in the anterior pituitary gland in cycling female rats as well as the influence of estradiol on the expression of these proteins in anterior pituitary cells of ovariectomized rats.
Chiral HPLC separation of a series of novel atropisomeric quaternary (1) and ternary (2) 1,2-disubstituted 1,4,5,6-tetrahydropyrimidinium salts bearing disymmetric aryl groups in positions 1 and/or 2 is described. A screening of different polysaccharide stationary phases (OD-R, OJ-R and AD-RH) and chromatographic conditions allowed for partial or baseline resolution of 16 over 26 compounds. When a semi-preparative separation was achieved, the corresponding enantiomerization barriers were determined employing the off-column method.
View Article and Find Full Text PDF