The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions.
View Article and Find Full Text PDFJ Med Chem
September 2022
Tolerance development caused by dopamine replacement with l-DOPA and therapeutic drawbacks upon activation of dopaminergic receptors with orthosteric agonists reveal a significant unmet need for safe and effective treatment of Parkinson's disease. In search for selective modulators of the D receptor, the screening of a chemical library and subsequent medicinal chemistry program around an identified hit resulted in new synthetic compound [UCM-1306, 2-(fluoromethoxy)-4'-(-methanesulfonimidoyl)-1,1'-biphenyl] that increases the dopamine maximal effect in a dose-dependent manner in human and mouse D receptors, is inactive in the absence of dopamine, modulates dopamine affinity for the receptor, exhibits subtype selectivity, and displays low binding competition with orthosteric ligands. The new allosteric modulator potentiates cocaine-induced locomotion and enhances l-DOPA recovery of decreased locomotor activity in reserpinized mice after oral administration.
View Article and Find Full Text PDFAging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease.
View Article and Find Full Text PDFSpinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA) has recently emerged as a new potential pharmacological approach to decrease SCI-associated damage.
View Article and Find Full Text PDFPeptidic agonists of the glucagon-like peptide-1 receptor (GLP-1R) have gained a prominent role in the therapy of type-2 diabetes and are being considered for reducing food intake in obesity. Potential advantages of small molecules acting as positive allosteric modulators (PAMs) of GLP-1R, including oral administration and reduced unwanted effects, could improve the utility of this class of drugs. Here, we describe the discovery of compound (4-{[1-({3-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-5-yl}methyl)piperidin-3-yl]methyl}morpholine, V-0219) that exhibits enhanced efficacy of GLP-1R stimulation, subnanomolar potency in the potentiation of insulin secretion, and no significant off-target activities.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile.
View Article and Find Full Text PDFOvarian cancer(OC) is a serious threat to women worldwide. Peritoneal dissemination, ascites and omental metastasis are typical features for disease progression, which occurs in a micro-environment that is rich in high-energy lipids. OC cells require high amounts of lipids for survival and growth.
View Article and Find Full Text PDFBacterial resistance to antibiotics makes previously manageable infections again disabling and lethal, highlighting the need for new antibacterial strategies. In this regard, inhibition of the bacterial division process by targeting key protein FtsZ has been recognized as an attractive approach for discovering new antibiotics. Binding of small molecules to the cleft between the N-terminal guanosine triphosphate (GTP)-binding and the C-terminal subdomains allosterically impairs the FtsZ function, eventually inhibiting bacterial division.
View Article and Find Full Text PDFFatty-acid(FA)-synthase(FASN) is a druggable lipogenic oncoprotein whose blockade causes metabolic disruption. Whether drug-induced metabolic perturbation is essential for anticancer drug-action, or is just a secondary-maybe even a defence response-is still unclear. To address this, SKOV3 and OVCAR3 ovarian cancer(OC) cell lines with clear cell and serous histology, two main OC subtypes, were exposed to FASN-inhibitor G28UCM.
View Article and Find Full Text PDFNeuropathic pain (NP) is a complex chronic pain state with a prevalence of almost 10% in the general population. Pharmacological options for NP are limited and weakly effective, so there is a need to develop more efficacious NP attenuating drugs. Activation of the type 1 lysophosphatidic acid (LPA) receptor is a crucial factor in the initiation of NP.
View Article and Find Full Text PDFUpregulation of fatty acid synthase (FASN) is a common event in cancer, although its mechanistic and potential therapeutic roles are not completely understood. In this study, we establish a key role of FASN during transformation. FASN is required for eliciting the anaplerotic shift of the Krebs cycle observed in cancer cells.
View Article and Find Full Text PDFBlockade of Ras activity by inhibiting its post-translational methylation catalyzed by isoprenylcysteine carboxylmethyltransferase (ICMT) has been suggested as a promising antitumor strategy. However, the paucity of inhibitors has precluded the clinical validation of this approach. In this work we report a potent ICMT inhibitor, compound [UCM-1336, IC = 2 μM], which is selective against the other enzymes involved in the post-translational modifications of Ras.
View Article and Find Full Text PDFMonoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools.
View Article and Find Full Text PDFSerotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools.
View Article and Find Full Text PDFThe innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking.
View Article and Find Full Text PDFRas proteins are among the most frequently mutated drivers in human cancer and remain an elusive pharmaceutical targeting. Previous studies have improved the understanding of Ras structure, processing, and signaling pathways in cancer cells and have opened new possibilities for inhibiting Ras function. In this review we discuss the most recent advances towards inhibiting Ras activity with small molecules, highlighting the two approaches: (i) compounds that bind directly to Ras protein and (ii) inhibitors of the enzymes involved in the post-translational modifications of Ras.
View Article and Find Full Text PDFThe human endogenous cannabinoid system (ECS) regulates key physiological processes and alterations in its signaling pathways, and endocannabinoid levels are associated with diseases such as neurological and neuropsychiatric conditions, cancer, pain and inflammation, obesity, and metabolic and different immune related disorders. Immune system cells express the G-protein coupled cannabinoid receptor 1 (CB), but its functional role has not been fully understood, likely due to the lack of appropriate tools. The availability of novel tools to investigate the role of CB in immune regulation might contribute to identify CB as a potential novel therapeutic target or biomarker for many diseases.
View Article and Find Full Text PDFThe 5-HTR agonist lorcaserin, clinically approved for the treatment of obesity, causes important side effects mainly related to subtype selectivity. In the search for 5-HTR allosteric modulators as safer antiobesity drugs, a chemical library from Vivia Biotech was screened using ExviTech platform. Structural modifications of identified hit VA240 in synthesized analogues 6-41 afforded compound 11 (N-[(1-benzyl-1H-indol-3-yl)methyl]pyridin-3-amine, VA012), which exhibited dose-dependent enhancement of serotonin efficacy, no significant off-target activities, and low binding competition with serotonin or other orthosteric ligands.
View Article and Find Full Text PDFThe failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease.
View Article and Find Full Text PDFFtsZ is a widely conserved tubulin-like GTPase that directs bacterial cell division and a new target for antibiotic discovery. This protein assembly machine cooperatively polymerizes forming single-stranded filaments, by means of self-switching between inactive and actively associating monomer conformations. The structural switch mechanism was proposed to involve a movement of the C-terminal and N-terminal FtsZ domains, opening a cleft between them, allosterically coupled to the formation of a tight association interface between consecutive subunits along the filament.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) is a lipid mediator that can activate five cell membrane G protein-coupled receptors (GPCRs) which carry a variety of essential functions and are promising drug targets. S1P is composed of a polar zwitterionic head-group and a hydrophobic alkyl chain. This implies an activation mechanism of its cognate receptor that must be significantly different from what is known for prototypical GPCRs (ie receptor to small hydrophilic ligands).
View Article and Find Full Text PDFSerotonin 5-HT receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer's disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4.
View Article and Find Full Text PDFReceptor-PI3K-mTORC1 signaling and fatty acid synthase (FASN)-regulated lipid biosynthesis harbor numerous drug targets and are molecularly connected. We hypothesize that unraveling the mechanisms of pathway cross-talk will be useful for designing novel co-targeting strategies for ovarian cancer (OC). The impact of receptor-PI3K-mTORC1 onto FASN is already well-characterized.
View Article and Find Full Text PDFDespite more than three decades of intense effort, no anti-Ras therapies have reached clinical application. Contributing to this failure has been an underestimation of Ras complexity and a dearth of structural information. In this regard, recent studies have revealed the highly dynamic character of the Ras surface and the existence of transient pockets suitable for small-molecule binding, opening up new possibilities for the development of Ras modulators.
View Article and Find Full Text PDFDetermination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein-coupled receptor (GPCR) ligands.
View Article and Find Full Text PDF