The utilization of kidneys from donors with acute kidney injury (AKI) is often limited by unpredictable post-transplantation outcomes. The aim of our study was to identify protein mediators implicated in either recovery or failure of these organs. Forty kidney biopsies from donors with (20) and without AKI (20) were selected and then subdivided according to the post-transplant outcome defined as a threshold of 45 ml/min for the eGFR at 1 year from transplantation.
View Article and Find Full Text PDFObjective: To provide mechanistic insight into key biological alterations in donation after circulatory death kidneys during continuous pefusion we performed mass spectrometry profiling of perfusate samples collected during a phase 3 randomized double-blind paired clinical trial of hypothermic machine perfusion with and without oxygen (COMPARE).
Background: Despite the clinical benefits of novel perfusion technologies aiming to better preserve donor organs, biological processes that may be altered during perfusion have remained largely unexplored. The collection of serial perfusate samples during the COMPARE clinical trial provided a unique resource to study perfusate proteomic profiles, with the hypothesis that in-depth profiling may reveal biologically meaningful information on how donor kidneys benefit from this intervention.
Kidney transplantation is the best renal-replacement option for most patients with end-stage renal disease. Normothermic machine preservation (NMP) of the kidney has been studied extensively during the last two decades and implemented in clinical trials. Biomarker research led to success in identifying molecules with diagnostic, predictive and therapeutic properties in chronic kidney disease.
View Article and Find Full Text PDFMaintaining organ viability between donation and transplantation is of critical importance for optimal graft function and survival. To date in pancreas transplantation, static cold storage (SCS) is the most widely practiced method of organ preservation. The first experiments in ex vivo perfusion of the pancreas were performed at the beginning of the 20th century.
View Article and Find Full Text PDFNormothermic machine perfusion (NMP) of injured kidneys offers the opportunity for interventions to metabolically active organs prior to transplantation. Mesenchymal stromal cells (MSCs) can exert regenerative and anti-inflammatory effects in ischemia-reperfusion injury. The aims of this study were to evaluate the safety and feasibility of MSC treatment of kidneys during NMP using a porcine autotransplantation model, and examine potential MSC treatment-associated kidney improvements up to 14 days posttransplant.
View Article and Find Full Text PDFWe describe a proteomics analysis to determine the molecular differences between normothermically perfused (normothermic machine perfusion, NMP) human kidneys with urine recirculation (URC) and urine replacement (UR). Proteins were extracted from 16 kidney biopsies with URC (n = 8 donors after brain death [DBD], n = 8 donors after circulatory death [DCD]) and three with UR (n = 2 DBD, n = 1 DCD), followed by quantitative analysis by mass spectrometry. Damage-associated molecular patterns (DAMPs) were decreased in kidney tissue after 6 hours NMP with URC, suggesting reduced inflammation.
View Article and Find Full Text PDFPancreatic static cold storage (SCS) is the gold-standard method for pancreas preservation. Our main objective was to evaluate feasibility of hypothermic perfusion (HP) of nonhuman primates' pancreases for potential organ transplantation. Seven baboon pancreases were tested.
View Article and Find Full Text PDFBackground: There is increasing interest in the use of noninvasive biomarkers to reduce the risks posed by invasive biopsy for monitoring of solid organ transplants (SOTs). One such promising marker is the presence of donor-derived cell-free DNA (dd-cfDNA) in the urine or blood of transplant recipients.
Methods: We systematically reviewed the published literature investigating the use of cfDNA in monitoring of graft health after SOT.
Together with carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the "gaseous triumvirate". The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.
View Article and Find Full Text PDFReactive species of oxygen, nitrogen and sulfur play cell signalling roles in human health, e.g. recent studies have shown that increased dietary nitrate, which is a source of RNS (reactive nitrogen species), lowers resting blood pressure and the oxygen cost of exercise.
View Article and Find Full Text PDF