Publications by authors named "Maria L Ferrelli"

Flavin-dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer-Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle.

View Article and Find Full Text PDF

Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance.

View Article and Find Full Text PDF

Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications.

View Article and Find Full Text PDF

Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time.

View Article and Find Full Text PDF

MicroRNAs are regulatory RNAs that are scarcely described in Baculoviruses. In this work we predicted a microRNA in silico, denominated agmnpv-miR-4, encoded in the genome of Anticarsia gemmatalis Nucleopolyhedrovirus (AgMNPV), which is homologous to the already validated bmnpv-miR-4 from Bombyx mori Nucleopolyhedrovirus (BmNPV). Considering information known for bmnpv-miR-4 such as seed sequence, coding location in the genome and putative target binding, we searched for the coding sequence of agmnpv-miR-4 in AgMNPV genome.

View Article and Find Full Text PDF

The fall armyworm, Spodoptera frugiperda (JE Smith) is a key pest in the Americas. Control strategies are mainly carried out by use of chemical insecticides and transgenic crops expressing Bacillus thuringiensis toxins. In the last years, resistance of S.

View Article and Find Full Text PDF

Polyhedron envelope protein (PEP) is the major component of the calyx that surrounds the baculovirus occlusion body (OB). PEP has been associated with the stabilization and resistance of polyhedra in the environment. Due to the abundant levels of PEP in OBs, we decided to use this protein as a fusion partner to redirect foreign proteins to baculovirus polyhedra.

View Article and Find Full Text PDF

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important maize pest.

View Article and Find Full Text PDF

Within family Baculoviridae, members of the Betabaculovirus genus are employed as biocontrol agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising biopesticide.

View Article and Find Full Text PDF

A new isolate of the Spodoptera frugiperda granulovirus, SfGV ARG, was completely sequenced and analyzed. The SfGV ARG genome is 139,812 bp long and encodes 151 putative open reading frames. Of these ORFs, 56 were found in betabaculoviruses, 19 of which are present only in GVs closely related to SfGV.

View Article and Find Full Text PDF

Background: Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent.

View Article and Find Full Text PDF