A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP).
View Article and Find Full Text PDFThe spontaneous emission rate and Purcell factor of self-assembled quantum wires embedded in photonic crystal micro-cavities are measured at 80 K by using micro-photoluminescence, under transient and steady state excitation conditions. The Purcell factors fall in the range 1.1 - 2 despite the theoretical prediction of ≈15.
View Article and Find Full Text PDFWe present continuous wave laser emission in a photonic crystal microcavity operating at 1.5 microm at room temperature. The structures have been fabricated in an InP slab including a single layer of self-assembled InAs/InP quantum wires (QWrs) as active material.
View Article and Find Full Text PDF