Pathological studies have determined that fibrillar forms of amyloid-beta protein (Abeta) comprise the characteristic neuritic plaques in Alzheimer's disease (AD). These studies have also revealed significant inflammatory markers such as activated microglia and cytokines surrounding the plaques. Although the plaques are a hallmark of AD, they are only part of an array of Abeta aggregate morphologies observed in vivo.
View Article and Find Full Text PDFAmyloid-beta (Abeta) is a naturally occurring 40- or 42-residue peptide fragment with a primary role in Alzheimer's disease (AD). Aggregated Abeta accumulates as both dense core plaques and diffuse deposits in the brains of AD patients. Abeta plaques are surrounded by activated microglia, some of which are believed to be derived from peripheral blood monocytes that have infiltrated the central nervous system and differentiated into phagocytes in response to Abeta.
View Article and Find Full Text PDFThe primary molecules for mediating the innate immune response are the Toll-like family of receptors (TLRs). Recent work has established that amyloid-beta (Abeta) fibrils, the primary components of senile plaques in Alzheimer's disease (AD), can interact with the TLR2/4 accessory protein CD14. Using antibody neutralization assays and tumor necrosis factor alpha release in the human monocytic THP-1 cell line, we determined that both TLR2 and TLR4 mediated an inflammatory response to aggregated Abeta(1-42).
View Article and Find Full Text PDF