Red Blood Cells (RBCs) are a promising drug delivery system candidate for many drugs. Using autologous cells helps to overcome biocompatibility issues, while microfluidics allows accurate control of the intracellular delivery of molecules through fluidic shear stress. With the ultimate goal of exploiting this delivery technique for clinical applications, we investigate how the chemical/rheological characteristics of the suspension and the properties of the RBCs in different animals influence the delivery mechanism.
View Article and Find Full Text PDFBackground: Comprehensive, patient-specific models are essential to study calcium deposition and mobilization during dialysis. We aim to develop tools to support clinical prescriptions with a more accurate approach for the prediction of calcium mobilization while also considering major electrolytes and catabolites.
Methods: We modified a multi-solute model predicting patient-specific dialysis response by incorporating a calcium buffer to represent bone exchanges.
The 3.1 target of the Sustainable Development Goals of the United Nations aims to reduce the global maternal mortality ratio to less than 70 maternal deaths per 100,000 live births by 2030. The last updates on this target show a significant stagnation in the data, thus reducing the chance of meeting it.
View Article and Find Full Text PDFPancreatic surgery is extremely challenging and demands an extended learning curve to be executed with a low incidence of post-operative complications. The soft consistency of the human pancreas poses a primary challenge for pancreatic surgeons. This study aimed to analyze the preliminary mechanical characteristics of the human pancreas to develop a realistic synthetic phantom for surgical simulations in the near future.
View Article and Find Full Text PDFPostpartum haemorrhage (PPH) is an obstetric emergency causing nearly one-quarter of maternal deaths worldwide, 99% of these in low-resource settings (LRSs). Uterine balloon tamponade (UBT) devices are a non-surgical treatment to stop PPH. In LRSs, low-cost versions of UBT devices are based on the condom balloon tamponade (CBT) technique, but their effectiveness is limited.
View Article and Find Full Text PDFObjective: The aim of the study was to develop an app to improve patients' adherence to therapy for osteoporosis and to test its usability.
Methods: In Phase I, the app functions needed to improve medication adherence were identified through a focus group with six patients with osteoporosis and a joint interview with two bone specialists. The app prototype was then developed (Phase II) and refined after its feasibility testing (Phase III) for 13-25 days by eight patients.
Three-dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly used to visualize in vitro models, especially microvasculature on-a-chip.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2023
The vascular microenvironment is the scale at which microvascular transport, interstitial tissue properties and cell metabolism interact. The vascular microenvironment has been widely studied by means of quantitative approaches, including multi-physics mathematical models as it is a central system for the pathophysiology of many diseases, such as cancer. The microvascular architecture is a key factor for fluid balance and mass transfer in the vascular microenvironment, together with the physical parameters characterizing the vascular wall and the interstitial tissue.
View Article and Find Full Text PDFThe choice of the most appropriate suture threads for pancreatic anastomoses may play an important role in reducing the incidence of post-operative pancreatic fistula (POPF). The literature on this topic is still not conclusive. The aim of this study was to analyze the mechanical characteristics of suture materials to find the best suture threads for pancreatic anastomoses.
View Article and Find Full Text PDFBackground: Infants with single-ventricle (SV) physiology undergo the 3-stage Fontan surgery. Norwood patients, who have completed the first stage, face the highest interstage mortality. The Berlin Heart EXCOR (BH), a pediatric pulsatile ventricular assist device, has shown promise in supporting these patients.
View Article and Find Full Text PDFDeveloping techniques for the tagless isolation of homogeneous cell populations in physiological-like conditions is of great interest in medical research. A particular case is Gravitational Field-Flow Fractionation (GrFFF), which can be run avoiding cell fixation, and that was already used to separate viable cells. Cell dimensions have a key role in this process.
View Article and Find Full Text PDFBackground: Parametric multipool kinetic models were used to describe the intradialytic trends of electrolytes, breakdown products, and body fluids volumes during hemodialysis. Therapy customization can be achieved by the identification of parameters, allowing patient-specific modulation of mass and fluid balance across dialyzer, capillary, and cell membranes. This study wants to evaluate the possibility to use this approach to predict the patient's intradialytic response.
View Article and Find Full Text PDFIntradialytic hypotension (IDH) is a common complication in patients undergoing hemodialysis therapy. No consensus on the definition of intradialytic hypotension has been established so far. As a result, coherent and consistent evaluation of its effects and causes is difficult.
View Article and Find Full Text PDFBackground: Given the impact of bioengineering and medical informatics technologies in health care, the design and implementation of education programs able to combine medical curricula with a proper teaching on engineering and informatics is now of paramount importance. In Italy, this goal has to fit in with the existing higher education system, which is structured into Bachelor programs and Master programs. Medicine and Surgery programs, instead, are designed as a six-year single-cycle Degree Program in Medicine and Surgery which comprises both class attendance and hospital internship and training.
View Article and Find Full Text PDFWe address a mathematical model for oxygen transfer in the microcirculation. The model includes blood flow and hematocrit transport coupled with the interstitial flow, oxygen transport in the blood and the tissue, including capillary-tissue exchange effects. Moreover, the model is suited to handle arbitrarily complex vascular geometries.
View Article and Find Full Text PDFIonizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME).
View Article and Find Full Text PDFThe inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development. The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank.
View Article and Find Full Text PDFCorrection for 'Design, development, testing at ISO standards and in vivo feasibility study of a novel polymeric heart valve prosthesis' by Joanna R. Stasiak et al., Biomater.
View Article and Find Full Text PDFClinically available prosthetic heart valves are life-saving, but imperfect: mechanical valves requiring anticoagulation therapy, whilst bioprosthetic valves have limited durability. Polymer valves offer the prospect of good durability without the need for anticoagulation. We report the design and development of a polymeric heart valve, its bench-testing at ISO standards, and preliminary extra-vivo and in vivo short-term feasibility.
View Article and Find Full Text PDFTotal artificial heart (TAH) represents the only valid alternative to heart transplantation, whose number is continuously increasing in recent years. The TAH used in this work, is a biventricular pulsatile, electrically powered, hydraulically actuated flow pump with all components embodied in a single device. One of the major issues for TAHs is the washout capability of the device, strictly correlated with the presence of blood stagnation sites.
View Article and Find Full Text PDFEncapsulating molecules into red blood cells (RBCs) is a challenging topic for drug delivery in clinical practice, allowing to prolong the residence time in the body and to avoid toxic residuals. Fluidic shear stress is able to temporary open the membrane pores of RBCs, thus allowing for the diffusion of a drug in solution with the cells. In this paper, both a computational and an experimental approach were used to investigate the mechanism of shear-induced encapsulation in a microchannel.
View Article and Find Full Text PDFFluid homeostasis is required for life. Processes involved in fluid balance are strongly related to exchanges at the microvascular level. Computational models have been presented in the literature to analyze the microvascular-interstitial interactions.
View Article and Find Full Text PDFWe present a two-phase model for microcirculation that describes the interaction of plasma with red blood cells. The model takes into account of typical effects characterizing the microcirculation, such as the Fahraeus-Lindqvist effect and plasma skimming. Besides these features, the model describes the interaction of capillaries with the surrounding tissue.
View Article and Find Full Text PDFHemodialysis is the most common therapy to treat renal insufficiency. However, notwithstanding the recent improvements, hemodialysis is still associated with a non-negligible rate of comorbidities, which could be reduced by customizing the treatment. Many differential compartment models have been developed to describe the mass balance of blood electrolytes and catabolites during hemodialysis, with the goal of improving and controlling hemodialysis sessions.
View Article and Find Full Text PDFBio-inspired polymeric heart valves (PHVs) are excellent candidates to mimic the structural and the fluid dynamic features of the native valve. PHVs can be implanted as prosthetic alternative to currently clinically used mechanical and biological valves or as potential candidate for a minimally invasive treatment, like the transcatheter aortic valve implantation. Nevertheless, PHVs are not currently used for clinical applications due to their lack of reliability.
View Article and Find Full Text PDF