Publications by authors named "Maria L Cabeza"

Bacterial survival in diverse and changing environments relies on the accurate interplay between different regulatory pathways, which determine the design of an adequate adaptive response. The proper outcome depends on a precise gene expression profile generated from the finely tuned and concerted action of transcriptional factors of distinct regulatory hierarchies. Salmonella enterica serovar Typhimurium harbors multiple regulatory systems that are crucial for the bacterium to cope with harsh extra- and intracellular environments.

View Article and Find Full Text PDF

The invasive pathogen Salmonella enterica has evolved a sophisticated device that allows it to enter nonphagocytic host cells. This process requires the expression of Salmonella pathogenicity island 1 (SPI-1), which encodes a specialized type III protein secretion system (TTSS). This TTSS delivers a set of effectors that produce a marked rearrangement of the host cytoskeleton, generating a profuse membrane ruffling at the site of interaction, driving bacterial entry.

View Article and Find Full Text PDF

Serological diagnosis of Trypanosoma cruzi infection is hampered by issues related to test specificity due to the cross-reactivity of most antigens with proteins of related parasites such as Leishmania spp. The recombinant calflagins are considered relevant antigens for the diagnosis of infection by Trypanosoma cruzi. In the present work, we describe two genes coding for putative calflagins in Leishmania major with the N-terminal moieties presenting high similarity with T.

View Article and Find Full Text PDF

The PhoP/PhoQ two-component system controls the extracellular magnesium depletion response in Salmonella enterica. Previous studies have shown that PhoP is unable to up-regulate its target genes in the absence of PhoQ function. In this work, we demonstrate that PhoP overexpression can substitute for PhoQ- and phosphorylation-dependent activation.

View Article and Find Full Text PDF

The PhoP/PhoQ two-component system controls the extracellular magnesium deprivation response in Salmonella enterica. In addition, several virulence-associated genes that are mainly required for intramacrophage survival during the infection process are under the control of its transcriptional regulation. Despite shared Mg(2+) modulation of the expression of the PhoP-activated genes, no consensus sequence common to all of them could be detected in their promoter regions.

View Article and Find Full Text PDF