The objectives of this study were to utilize bio-oil-based epoxy resin in oriented strand board (OSB) production and investigate the effect of bio-oil substitution in epoxy resin as an adhesive for OSB production. Bio-oil was produced by the fast pyrolysis (FP) process using southern yellow pine ( spp.).
View Article and Find Full Text PDFComputational studies on the pyrolysis of lignin using electronic structure methods have been largely limited to dimeric or trimeric models. In the current work we have modeled a lignin oligomer consisting of 10 syringyl units linked through 9 β-O-4' bonds. A lignin model of this size is potentially more representative of the polymer in angiosperms; therefore, we used this representative model to examine the behavior of hardwood lignin during the initial steps of pyrolysis.
View Article and Find Full Text PDFImproving soil engineering properties is an inevitable process before construction on soft soil. Increasing soil strength with chemical stabilizing agents, such as cement, raises environmental concerns. Therefore, sustainable solutions are in high demand.
View Article and Find Full Text PDFThe use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties.
View Article and Find Full Text PDFThe goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments.
View Article and Find Full Text PDFThe preparation of alginate-chitosan fibers, through wet spinning technique, as well as the study of their properties as a function of chitosan's molecular weight and retention time in the coagulation bath, is presented and discussed in this work. Scanning electron microscopy (SEM) revealed that the fibers presented irregular and rough surfaces, with a grooved and heavily striated morphology distributed throughout the structure. Dynamic mechanical analysis (DMA) showed that, with the exception of elongation at break, the incorporation of chitosan into the fibers improved their tensile properties.
View Article and Find Full Text PDFOne of the important applications for which phage-immobilized magnetoelastic (ME) biosensors are being developed is the wireless, on-site detection of pathogenic bacteria for food safety and bio-security. Until now, such biosensors have been constructed by immobilizing a landscape phage probe on gold-coated ME resonators via physical adsorption. Although the physical adsorption method is simple, the immobilization stability and surface coverage of phage probes on differently functionalized sensor surfaces need to be evaluated as a potential way to enhance the detection capabilities of the biosensors.
View Article and Find Full Text PDFA modular photocurrent generation system, based on amphiphilic porphyrin and fullerene species assembled in a tethered lipid bilayer matrix, is reported here. The key findings are (1) the amount of photoactive species can be quantitatively controlled in each leaflet of the bilayer and (2) the sequential formation of the bilayer allows a directional organization of these agents on electrodes. Photocurrent generation from seven differently configured photoactive bilayers is studied, which reveals several critical factors in achieving efficient photoinduced electron transfer across lipid membranes.
View Article and Find Full Text PDF