Publications by authors named "Maria L Alfieri"

In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission ( = 620 nm, = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach.

View Article and Find Full Text PDF

Investigation of the oxidation pathway of 5,6-dihydroxyindole (DHI), one of the main biosynthetic precursors of the brown-to-black skin and hair melanin pigments, represents a promising approach for the elucidation of the structure of these pigments in biological systems. We report herein the exploration of DHI oxidation chemistry under conditions so far poorly investigated, i.e.

View Article and Find Full Text PDF

TiO nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase.

View Article and Find Full Text PDF

The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres.

View Article and Find Full Text PDF

Melanins are pigments employed in food, cosmetic, and textile industries, manufactured by extraction from cuttlefishes. Their biotechnological production by Streptomycetes, instead, has been poorly investigated so far. In this paper, for the first time, the strain DSM 40314 was tested as an extracellular melanin producer by investigating the influence of diverse temperatures (26, 28, and 30 °C) and pH values (6.

View Article and Find Full Text PDF

1,4-Benzothiazines are the main building blocks of the naturally occurring pheomelanin pigments, and their chromophoric properties have been strongly related to the well-known phototoxicity of these pigments, partly responsible for the high incidence of melanoma and other skin cancers in red-haired people. However, some peculiar features of the 1,4-benzothiazine chromophore could be functionally exploited in several sectors. Within this context, in this perspective, an overview of the very recently reported applications of the 1,4-benzothiazine chromophore in pH sensing, filter permeability control, smart packaging, electrochromic device fabrication, bioimaging, photocatalysis, and HPLC detection systems is provided, together with a brief presentation of recently developed synthetic approaches to the 1,4-benzothiazine scaffold, with the aim of emphasizing the still-undervalued multifunctional opportunities offered by this class of compounds.

View Article and Find Full Text PDF

A promising approach for advanced bone implants is the deposition on titanium surfaces of organic thin films with improved therapeutic performances. Herein, we reported the efficient dip-coating deposition of caffeic acid (CA)-based films on both polished and chemically pre-treated Ti6Al4V alloys by exploiting hexamethylenediamine (HMDA) crosslinking ability. The formation of benzacridine systems, resulting from the interaction of CA with the amino groups of HMDA, as reported in previous studies, was suggested by the yellow/green color of the coatings.

View Article and Find Full Text PDF

The search for new synthetic melanin-related pigments that maintain the antioxidant and photoprotective properties of naturally occurring dark eumelanins, while overcoming their unfavorable solubility, and molecular heterogeneity is presently a very active issue for dermo-cosmetic purposes. In this work, we explored the potential of a melanin obtained from the carboxybutanamide of a major eumelanin biosynthetic precursor, 5,6-dihydroxyindole-2-carboxylic acid (DHICA), by aerobic oxidation under slightly alkaline conditions. Analysis of the pigment by EPR, ATR-FTIR and MALDI MS indicated a substantial structural similarity to DHICA melanin, while investigation of the early intermediates confirmed unchanged regiochemistry of the oxidative coupling.

View Article and Find Full Text PDF

Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging.

View Article and Find Full Text PDF

Diverse natural and synthetic furan derivatives have shown biological activity. Here, we describe the preparation of benzyl and arylethyl β-furanamides with OH or OMe aryl substituents by an adapted sustainable method from a furoic acid using methyl chloroformate. Symmetric and asymmetric β,β'-furanamides have instead been prepared using azabenzotriazole based catalyst (HATU).

View Article and Find Full Text PDF

Hypothesis: The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity.

Experiments: MeDHICA and HMDA were reacted in aqueous buffer, pH 9.

View Article and Find Full Text PDF

In the last years coating of surfaces in the presence of dopamine or other catecholamines in oxidative conditions to yield "polydopamine" films has become a popular, easy and versatile coating methodology. Polydopamine(s) offer(s) also a rich chemistry allowing to post-functionalize the obtained coatings with metal nanoparticles with polymers and proteins. However, the interactions either of covalent or non-covalent nature between polydopamine and biomolecules has only been explored more recently.

View Article and Find Full Text PDF

The addition of thiol compounds to -quinones, as exemplified by the biologically relevant conjugation of cysteine to dopaquinone, displays an anomalous 1,6-type regiochemistry compared to the usual 1,4-nucleophilic addition, for example, by amines, which has so far eluded intensive investigations. By means of an integrated experimental and computational approach, herein, we provide evidence that the addition of glutathione, cysteine, or benzenethiol to 4-methyl--benzoquinone, modeling dopaquinone, proceeds by a free radical chain mechanism triggered by the addition of thiyl radicals to the -quinone. In support of this conclusion, DFT calculations consistently predicted the correct regiochemistry only for the proposed thiyl radical-quinone addition pathway.

View Article and Find Full Text PDF

The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains.

View Article and Find Full Text PDF

Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA).

View Article and Find Full Text PDF

Introduction: An education strategy was employed in our department to increase the rate of patients with uncomplicated painful bone metastases undergoing single fractionation radiotherapy (SFRT). The purpose of this report is to analyze the results of this strategy over a 5 year period.

Materials And Methods: In January 2015, two meetings were organized in our department.

View Article and Find Full Text PDF

Sulfated phenolic polymers have extensively been investigated as anticoagulant agents in view of their higher bioavailability and resistance to degradation compared to heparins, allowing for increased half-lives. In this frame, we report herein the preparation of sulfated derivatives of tyrosol, one of the most representative phenolic constituents of extra virgin olive oil, by different approaches. Mild sulfation of OligoTyr, a mixture of tyrosol oligomers, that has been reported to possess antioxidant properties and osteogenic activity, afforded OligoTyrS I in good yields.

View Article and Find Full Text PDF

Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds.

View Article and Find Full Text PDF

The mechanism of the acid-dependent interring dehydrogenation in the conversion of the single-bonded 3-phenyl-2-1,4-benzothiazine dimer to the Δ-bi(2-1,4-benzothiazine) scaffold of red hair pigments is disclosed herein. Integrated chemical oxidation and oxygen consumption experiments, coupled with electron paramagnetic resonance (EPR) analyses and DFT calculations, allowed the identification of a key diprotonated free-radical intermediate, which was implicated in a remarkable oxygen-dependent chain process via peroxyl radical formation and evolution to give the Δ-bi(2-1,4-benzothiazine) dimer by interring dehydrogenation. The critical requirement for strongly acidic conditions was rationalized for the first time by the differential evolution channels of isomeric peroxyl radical intermediates at the 2- versus 3-positions.

View Article and Find Full Text PDF

A new red hair-inspired 1,4-benzothiazine-based scaffold is disclosed herein, built upon a modular D-π-A architecture via condensation of the easily accessible 3-phenyl-2-1,4-benzothiazine with indole-3-carboxaldehyde. The compound was obtained in around 50% yields and was characterized by complete spectroscopic analysis. The new benzothiazine-based cyanine displayed a characteristic reversible acidichromic behavior with a marked bathochromic shift upon acidification.

View Article and Find Full Text PDF

The tyrosinase-catalyzed oxidation of tyramine, leading to the deposition of pseudo-polydopamine (ψ-PDA) thin films, is disclosed herein as a superior technology for surface functionalization and coating at a neutral pH and at a low substrate concentration, compared to the standard autoxidative PDA coating protocols. Smooth ψ-PDA thin films of variable thickness up to 87 nm were obtained from 1 mM tyramine by varying tyrosinase concentrations (5-100 U/mL). Compared to the PDA films obtained by the similar enzymatic oxidation of 1 mM dopamine with tyrosinase (T-PDA), ψ-PDA displayed slower deposition kinetics, lower water contact angles in the range of 11°-28°, denoting higher hydrophilicity but similar UV-vis absorption profiles, as well as electrochemical properties and antioxidant activity.

View Article and Find Full Text PDF

Eumelanins, the dark variant of skin pigments, are endowed with a remarkable antioxidant activity and well-recognized photoprotective properties that have been ascribed to pigment components derived from the biosynthetic precursor 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Herein, we report the protective effect of a polymer obtained starting from the methyl ester of DHICA (MeDHICA-melanin) against Ultraviolet A (UVA)-induced oxidative stress in immortalized human keratinocytes (HaCaT). MeDHICA-melanin was prepared by aerial oxidation of MeDHICA.

View Article and Find Full Text PDF

The ability of gelatin-based hydrogels of incorporating and releasing under controlled conditions 5,6-dihydroxyindole-2-carboxylic acid (DHICA), a melanin-related metabolite endowed with marked antioxidant properties was investigated. The methyl ester of DHICA, MeDHICA, was also tested in view of its higher stability, and different solubility profile. Three types of gelatin-based hydrogels were prepared: pristine porcine skin type A gelatin (HGel-A), a pristine gelatin cross-linked by amide coupling of lysines and glutamic/aspartic acids (HGel-B), and a gelatin/chitosan blend (HGel-C).

View Article and Find Full Text PDF

The reaction-based deposition on various surfaces of an all-organic fluorescent coating is reported here, involving autoxidation of 2 mM dopamine in carbonate buffer at pH 9.0, in the presence of a 1 mM diamine-resorcinol coupler (Bis-Res) prepared from 2,4-dihydroxybenzaldehyde and hexamethylenediamine (HMDA). Spectral analysis of the films coupled with an LC-MS investigation of the yellow fluorescent mixture was compatible with the formation and deposition of HMDA-linked methanobenzofuroazocinone fluorophores.

View Article and Find Full Text PDF

Hexamethylenediamine (HMDA) and other long chain aliphatic diamines can induce substrate-independent polymer film deposition from dopamine and several other catechols substrates at relatively low concentrations, however the mechanism of the diamine-promoted effect has remained little understood. Herein, we report data indicating that: (a) film deposition from 1 mM HMDA and dopamine is not affected by chemical oxidation with periodate but is markedly inhibited by resorcinol, which also prevents PDA film formation at 10 mM monomer concentration in the absence of HMDA; (b) N-acetylation of HMDA completely inhibits the effect on PDA film formation; (c) HMDA enables surface functionalization with 1 mM 5,6-dihydroxyindole (DHI) polymerization at pH 9.0 in a resorcinol-inhibitable manner.

View Article and Find Full Text PDF