Biochem Biophys Res Commun
November 2024
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems.
View Article and Find Full Text PDFMultipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g.
View Article and Find Full Text PDFThe development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice.
View Article and Find Full Text PDFCell sheet (CS) engineering using mesenchymal stromal cells (MSC) draws significant interest for regenerative medicine and this approach translates to clinical use for numerous indications. However, little is known of factors that define the timing of CS assembly from primary cultures. This aspect is important for planning CS delivery in autologous and allogeneic modes of use.
View Article and Find Full Text PDFT-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated.
View Article and Find Full Text PDFBiomedicines
March 2023
Mesenchymal stromal cells (MSCs) are the key regulators of tissue homeostasis and repair after damage. Accumulating evidence indicates the dual contribution of MSCs into the development of fibrosis induced by chronic injury: these cells can suppress the fibrotic process due to paracrine activity, but their promoting role in fibrosis by differentiating into myofibroblasts has also been demonstrated. Many model systems reproducing fibrosis have shown the ability of peroxisome proliferator-activated receptor (PPAR) agonists to reverse myofibroblast differentiation.
View Article and Find Full Text PDFBesides certain exceptions, healing of most tissues in the human body occurs formation of scar tissue, rather than restoration of lost structures. After extensive acute injuries, this phenomenon substantially limits the possibility of lost function recovery and, in case of chronic injury, it leads to pathological remodeling of organs affected. Managing outcomes of damaged tissue repair is one of the main objectives of regenerative medicine.
View Article and Find Full Text PDFExtracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components.
View Article and Find Full Text PDFFront Cell Dev Biol
July 2020
Homeotic genes are universal regulators of the body patterning process in embryogenesis of metazoans. The gene expression pattern ( code) retains in adult tissues and serves as a cellular positional identity marker. Despite previously existing notions that the code is inherent in all stroma mesenchymal cells as a whole, recent studies have shown that the code may be an attribute of a distinct subpopulation of adult resident mesenchymal stromal cells (MSC).
View Article and Find Full Text PDF