Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and the most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~ 65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia.
View Article and Find Full Text PDFHead and neck cancers, which include oral squamous cell carcinoma (OSCC) as a major subsite, exhibit cellular plasticity that includes features of an epithelial-mesenchymal transition (EMT), referred to as partial-EMT (p-EMT). To identify molecular mechanisms contributing to OSCC plasticity, we performed a multiphase analysis of single cell RNA sequencing (scRNAseq) data from human OSCC. This included a multiresolution characterization of cancer cell subgroups to identify pathways and cell states that are heterogeneously represented, followed by casual inference analysis to elucidate activating and inhibitory relationships between these pathways and cell states.
View Article and Find Full Text PDFUnlabelled: Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco-and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ∼65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia.
View Article and Find Full Text PDFUnlabelled: Lysine-specific demethylase 1 (LSD1) is a histone demethylase that contributes to the etiology of oral squamous cell carcinoma (OSCC) in part by promoting cancer stem cell phenotypes. The molecular signals regulated by LSD1, or acting with LSD1, are poorly understood, particularly in the development of OSSC. In this study, we show that conditional deletion of the Lsd1 gene or pharmacologic inhibition of LSD1 in the tongue epithelium leads to reduced development of OSCC following exposure to the tobacco carcinogen 4NQO.
View Article and Find Full Text PDFThe development of ductal structures during branching morphogenesis relies on signals that specify ductal progenitors to set up a pattern for the ductal network. Here, we identify cellular asymmetries defined by the F-actin cytoskeleton and the cell adhesion protein ZO-1 as the earliest determinants of duct specification in the embryonic submandibular gland (SMG). Apical polarity protein aPKCζ is then recruited to the sites of asymmetry in a ZO-1-dependent manner and collaborates with ROCK signaling to set up apical-basal polarity of ductal progenitors and further define the path of duct specification.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) is a major driver of head and neck cancer, a devastating malignancy with a major sub-site in the oral cavity manifesting as oral squamous cell carcinoma (OSCC). EGFR is a glycoprotein receptor tyrosine kinase (RTK) whose activity is upregulated in >80% OSCC. Current anti-EGFR therapy relies on the use of cetuximab, a monoclonal antibody against EGFR, although it has had only a limited response in patients.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied oral cancer. However, there is a void regarding the role that the oral microbiome may play in OSCC. Although the relationship between microbial community composition and OSCC has been thoroughly investigated, microbial profiles of the human microbiome in cancer are understudied.
View Article and Find Full Text PDFBackground: Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy characterized by tumor heterogeneity, locoregional metastases, and resistance to existing treatments. Although a number of genomic and molecular alterations associated with HNSCC have been identified, they have had limited impact on the clinical management of this disease. To date, few targeted therapies are available for HNSCC, and only a small fraction of patients have benefited from these treatments.
View Article and Find Full Text PDFLysine-specific demethylase 1 (LSD1) is a nuclear histone demethylase and a member of the amine oxidase (AO) family. LSD1 is a flavin-containing AO that specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 through an FAD-dependent oxidative reaction. LSD1 is inappropriately upregulated in lung, liver, brain and esophageal cancers, where it promotes cancer initiation, progression, and metastasis.
View Article and Find Full Text PDFSalivary glands, such as submandibular glands (SMGs), are composed of branched epithelial ductal networks that terminate in acini that together produce, transport and secrete saliva. Here, we show that the transcriptional regulator Yap, a key effector of the Hippo pathway, is required for the proper patterning and morphogenesis of SMG epithelium. Epithelial deletion of in developing SMGs results in the loss of ductal structures, arising from reduced expression of the EGF family member Epiregulin, which we show is required for the expansion of Krt5/Krt14-positive ductal progenitors.
View Article and Find Full Text PDFThe cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction.
View Article and Find Full Text PDFUnlabelled: Over 45,000 new cases of oral and pharyngeal cancers are diagnosed and account for over 8,000 deaths a year in the United States. An environmental chemical receptor, the aryl hydrocarbon receptor (AhR), has previously been implicated in oral squamous cell carcinoma (OSCC) initiation as well as in normal tissue-specific stem cell self-renewal. These previous studies inspired the hypothesis that the AhR plays a role in both the acquisition and progression of OSCC, as well as in the formation and maintenance of cancer stem-like cells.
View Article and Find Full Text PDFCarcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers.
View Article and Find Full Text PDFThe relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs.
View Article and Find Full Text PDFUnlabelled: Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited.
View Article and Find Full Text PDFOral cancer is characterized by high morbidity and mortality with a predisposition to metastasize to different tissues, including lung, liver, and bone. Despite progress in the understanding of mutational profiles and deregulated pathways in oral cancer, patient survival has not significantly improved over the past decades. Therefore, there is a need to establish in vivo models that recapitulate human oral cancer metastasis to evaluate therapeutic potential of novel drugs.
View Article and Find Full Text PDFCumulative findings from many research groups have identified new signaling mechanisms associated with head and neck cancers. We summarize these findings, including discussion of aberrant NOTCH, PI3K, STAT3, immune recognition, oxidative pathway, and regulation of cell cycle and cell death. The genomic landscape of head and neck cancers has been shown to differ depending on human papillomavirus (HPV) status.
View Article and Find Full Text PDFN-Linked glycosylation (N-glycosylation) of proteins has long been associated with oncogenesis, but not until recently have the molecular mechanisms underlying this relationship begun to be unraveled. Here, we review studies describing how dysregulation of the N-glycosylation-regulating gene, DPAGT1, drives oral cancer. DPAGT1 encodes the first and rate-limiting enzyme in the assembly of the lipid-linked oligosaccharide precursor in the endoplasmic reticulum and thus mediates N-glycosylation of many cancer-related proteins.
View Article and Find Full Text PDFSjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin has pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is one of the most pernicious malignancies, but the mechanisms underlying its development and progression are poorly understood. One of the key pathways implicated in OSCC is the canonical Wnt/β-catenin signaling pathway. Previously, we reported that canonical Wnt signaling functions in a positive feedback loop with the DPAGT1 gene, a principal regulator of the metabolic pathway of protein N-glycosylation, to hyperglycosylate E-cadherin and reduce intercellular adhesion.
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol
July 2013
The metabolic pathway of protein N-glycosylation influences intercellular adhesion by affecting the composition and cytoskeletal association of E-cadherin protein complexes, or adherens junctions (AJs). In sparse cells, E-cadherin is modified extensively with complex N-glycans and forms nascent AJs, while in dense cultures, hypoglycosylated E-cadherin drives the assembly of mature AJs with increased levels of γ- and α-catenins. N-glycosylation of E-cadherin is controlled by the DPAGT1 gene, a key regulator of the N-glycosylation pathway.
View Article and Find Full Text PDFOral cancer is one of the most aggressive epithelial malignancies, whose incidence is on the rise. Previous studies have shown that in a subset of human oral squamous cell carcinoma (OSCC) tumor specimens, overexpression of the DPAGT1 gene, encoding the dolichol-P-dependent N-acetylglucoseamine-1-phosphate transferase, a key regulator of the metabolic pathway of protein N-glycosylation, drives tumor cell discohesion by inhibiting E-cadherin adhesive function. Recently, we reported that DPAGT1 was a target of the canonical Wnt signaling pathway.
View Article and Find Full Text PDF