In this study, we employ spectroscopic, thermodynamic and molecular docking approaches to identify the mechanism by which thiazolidinone derivatives 4a-4d bind with human serum albumin. It has been suggested that the affinity of the interaction of derivatives 4a-4d with HSA is within the optimal range necessary for the transportation and distribution of compounds within the organism. The binding constant values for the derivative/HSA complexes were found to be 0.
View Article and Find Full Text PDFTwo In(III) - pyridinecarboxylates ([In(Pic)(NO)(HO)] (InPic; HPic = picolinic acid), [In(HDpic)(Dpic)(HO)]·5HO (InDpic; HDpic = dipicolinic acid), have been synthesized by one-step procedure. The complexes composition was confirmed by physicochemical analyses and X-ray diffraction confirmed molecular structure of both complexes. Moreover, complex species speciation was described in both systems by potentiometry and H NMR spectroscopy and mononuclear complex species were determined; [In(Pic)] (logβ = 6.
View Article and Find Full Text PDFRNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.
View Article and Find Full Text PDFDNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs.
View Article and Find Full Text PDFA series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives -, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level.
View Article and Find Full Text PDFA series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1).
View Article and Find Full Text PDFThe potential of acridines (amsacrine) as a topoisomerase II inhibitor or poison was first discovered in 1984, and since then, a considerable number of acridine derivatives have been tested as topoisomerase inhibitors/poisons, containing different substituents on the acridine chromophore. This review will discuss a series of studies published over the course of the last decade, which have investigated various novel acridine derivatives against topoisomerase II activity.
View Article and Find Full Text PDFA novel series of proflavine ureas, derivatives -, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing -alkyl chains. The lipophilicity (Log) and the changes in the standard entropy (Δ°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics.
View Article and Find Full Text PDFA series of novel C4-C7-tethered biscoumarin derivatives (-) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC = 6.30 µM) and butyrylcholinesterase (BChE, IC = 49 µM).
View Article and Find Full Text PDFA549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives -) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (TOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability.
View Article and Find Full Text PDFJ Appl Toxicol
January 2021
Heterocycles have long been the focus of intensive study in attempts to develop novel therapeutic compounds, and acridine, a polynuclear nitrogen molecule containing a heterocycle, has attracted a considerable amount of scientific attention. Acridine derivatives have been studied in detail and have been found to possess multitarget properties, which inhibit topoisomerase enzymes that regulate topological changes in DNA and interfere with the essential biological function of DNA. This article describes some recent advancements in the field of new 9-substituted acridine heterocyclic agents and describes both the structure and the structure-activity relationship of the most promising molecules.
View Article and Find Full Text PDFA series of new 3,6,9-trisubstituted acridine derivatives with fluorine substituents on phenyl ring were synthesized and their interaction with calf thymus DNA was investigated. Analysis using UV-Vis absorbance spectra provided valuable information about the formation of the acridine-DNA complex. In addition, compounds 8b and 8d were found to display an increased binding affinity (K = 2.
View Article and Find Full Text PDFJ Appl Toxicol
January 2020
Proflavine derivatives are extremely interesting chemotherapeutic agents, which have shown promising pharmaceutical potential due to their wide range of biological activities. This review summarizes the current state of research into the anticancer, antimicrobial, antimalarial and antileishmanial properties of these attractive compounds. Our attention has focused on new classes of proflavine conjugates, which display significant levels of anticancer activity.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2019
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used drugs in the world but some NSAIDs such as diclofenac and tolfenamic acid display levels of cytotoxicity, an effect which has been attributed to the presence of diphenylamine contained in their structures. A novel series of diphenylamine derivatives were synthetised and evaluated for their cytotoxic activities and proliferation inhibition. The most active compounds in the cytotoxicity tests were derivative 6g with an IC value of 2.
View Article and Find Full Text PDFThis review describes the synthesis of a wide range of novel tetrahydroacridine derivatives (tiocyanates, selenocyanates, ureas, selenoureas, thioureas, isothioureas, disulfides, diselenides and several tacrine homo- and hetro-hybrids). These tacrine congeners exhibit significant anticholinesterase and cytotoxic properties and may therefore be of considerable potential for the development of new drugs for the treatment of Alzheimer's disease.
View Article and Find Full Text PDFCurr Med Chem
November 2018
Background: The possible use of acridines as anticancer agents was first considered in the 1920´s. Since then, a large number of acridine drugs have been tested as antitumour agents, including compounds containing sulphur on the acridine chromophore. In this review, we will discuss recent studies which have investigated the anticancer activity of this class of acridine derivatives.
View Article and Find Full Text PDFAcridines possess two characteristics that have led many researchers to consider the agents interesting targets for future development as potential farmacophores: the planar acridine skeleton, which is able to intercalate into DNA, and the intense fluorescence of the agents. This review offers a study of the multifunctional character of acridines and the synthesis of novel acridine derivatives, with particular focus being placed on isothiocyanates and their congeners, e.g.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2017
This paper describes the synthesis of a novel series of acridine thiosemicarbazones through a two-step reaction between various isothiocyanates and hydrazine followed by treatment with acridin-9-carbaldehyde. The properties of this series of seven new derivatives are studied using NMR and biochemical techniques, and the DNA-binding properties of the compounds are determined using spectrophotometric studies (UV-vis absorption, fluorescence, and circular/linear dichroism) and viscometry. The binding constants K are estimated as being in the range of 2.
View Article and Find Full Text PDFThree new diphenylsubstituted spirotriazolidine- and thiazolidinone-acridines were prepared and their interaction with calf thymus DNA investigated with UV-vis, fluorescence, circular dichroism spectroscopy and viscometry. The binding constants K were estimated to range from 0.34 to 0.
View Article and Find Full Text PDFHL-60 cancer cells were treated with a series of novel acridine derivatives (derivatives 1-4) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. Binding studies of derivatives 1-4 with calf thymus DNA were also performed using a number of techniques (UV-Vis and fluorescence spectroscopy, thermal denaturation, linear dichroism and viscometry) to determine the nature of the interaction between the compounds and ctDNA. The binding constants for the complexes of the studied acridine derivatives with DNA were calculated from UV-Vis spectroscopic titrations (K=3.
View Article and Find Full Text PDFThis study examines the binding properties of a series of newly synthetized tacrine derivatives 1-4 and their anticancer effects. Spectroscopic techniques (UV-Vis, fluorescence spectroscopy, thermal denaturation, and linear spectropolarimetry) and viscometry were used to study DNA binding properties and to determine the types of DNA interaction with the studied derivatives. The binding constants for the complexes with DNA were obtained using UV-Vis spectroscopic titrations (K = 1.
View Article and Find Full Text PDFA novel series of trisubstituted acridines were synthesized with the aim of mimicking the effects of BRACO19. These compounds were synthesized by modifying the molecular structure of BRACO19 at positions 3 and 6 with heteroacyclic moieties. All of the derivatives presented in the study exhibited stabilizing effects on the human telomeric DNA quadruplex.
View Article and Find Full Text PDFA new series of substituted tacrine/acridine and tacrine/tacrine dimers with aliphatic or alkylene-thiourea linkers was synthesized and the potential of these compounds as novel human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE) inhibitors with nanomolar inhibition activity was evaluated. The most potent AChE inhibitor was found to be homodimeric tacrine derivative 14a, which demonstrated an IC50 value of 2 nM; this value indicates an activity rate which is 250-times higher than that of tacrine 1 and 7500-times higher than 7-MEOTA 15, the compounds which were used as standards in the study. IC50 values of derivatives 1, 9, 10, 14b and 15 were compared with the dissociation constants of the enzyme-inhibitor complex, Ki1, and the enzyme-substrate-inhibitor complex, Ki2, for.
View Article and Find Full Text PDFThis research was focused on a study of the binding properties of a series of cholinesterase reactivators compounds K075 (1), K027 (2) and inhibitors compounds K524, K009 and 7-MEOTA (3-5) with calf thymus DNA. The nature of the interactions between compounds 1-5 and DNA were studied using spectroscopic techniques (UV-vis, fluorescence spectroscopy and circular dichroism). The binding constants for complexes of cholinesterase modulators with DNA were determined from UV-vis spectroscopic titrations (K=0.
View Article and Find Full Text PDF