Publications by authors named "Maria Koulmanda"

For patients with non-cirrhotic liver-based metabolic disorders, hepatocyte transplantation can be an effective treatment. However, long-term function of transplanted hepatocytes following infusion has not been achieved due to insufficient numbers of hepatocytes reaching the liver cell plates caused by activation of the instant blood-mediated inflammatory reaction (IBMIR). Our aim was to determine if the natural immune modulator, alpha-1 antitrypsin (AAT), could improve engraftment of transplanted hepatocytes and investigate its mechanism of action.

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoietic stem/progenitor cells (HSPCs) have the unique ability to self-renew and differentiate into various cell types, adapting to their environment.
  • In a study using a peritonitis animal model induced by zymosan, researchers examined how these BM-derived HSPCs interact with innate lymphoid cells (ILCs) during inflammation.
  • Results indicate that low doses of zymosan lead to ILCs that rely on HSPCs for differentiation, while high doses of zymosan promote ILC emergence independently of HSPCs due to stronger inflammatory signals.
View Article and Find Full Text PDF

Limited availability of donor organs and risk of ischemia-reperfusion injury (IRI) seriously restrict organ transplantation. Therapeutics that can prevent or reduce IRI could potentially increase the number of transplants by increasing use of borderline organs and decreasing discards. Alpha-1 antitrypsin (AAT) is an acute phase reactant and serine protease inhibitor that limits inflammatory tissue damage.

View Article and Find Full Text PDF

Objective: To determine the safety and pharmacokinetics of alpha-1 antitrypsin (AAT) in adults and children.

Research Design And Methods: Short-term AAT treatment restores euglycemia in the non-obese mouse model of type 1 diabetes. A phase I multicenter study in 16 subjects with new-onset type 1 diabetes studied the safety and pharmacokinetics of Aralast NP (AAT).

View Article and Find Full Text PDF
Article Synopsis
  • * Islet resident macrophages (IRMs) from healthy mice promote the growth of regulatory T cells (Tregs) but lose their regulatory function when activated by TLR4, especially as T1D develops in NOD mice.
  • * Enhancing the abundance and function of IRMs could be a new therapeutic approach for preventing or treating T1D.
View Article and Find Full Text PDF

We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin.

View Article and Find Full Text PDF

Background: Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.

View Article and Find Full Text PDF

Purpose Of Review: To update knowledge concerning the cause and consequences of the detrimental forms of innate immunity that inevitably occurs in peritransplant period tissue and cellular transplants. In addition, we review the information that a newly discovered, engraftment-promoting, and tolerance-inducing macrophage population is identified and characterized.

Recent Findings: The allograft response mounted by adaptive immune cells is shaped by innate immunity.

View Article and Find Full Text PDF

Purpose Of Review: The field of vascularized composite allograft (VCA) to achieve its full potential will require induction of tolerance. This review will introduce a new method of potential inducing tolerance in hand transplantation.

Recent Findings: Hand transplantation is never a life-extending transplant.

View Article and Find Full Text PDF

Macrophages characterized as M2 and M2-like regulate immune responses associated with immune suppression and healing; however, the relationship of this macrophage subset to CD169+ tissue-resident macrophages and their contribution to shaping alloimmune responses is unknown. Here we identified a population of M2-like tissue-resident macrophages that express high levels of the phosphatidylserine receptor TIM-4 and CD169 (TIM-4hiCD169+). Labeling and tracking of TIM-4hiCD169+ macrophages in mice revealed that this population is a major subset of tissue-resident macrophages, homes to draining LNs following oxidative stress, exhibits an immunoregulatory and hypostimulatory phenotype that is maintained after migration to secondary lymphoid organs, favors preferential induction of antigen-stimulated Tregs, and is highly susceptible to apoptosis.

View Article and Find Full Text PDF

Harness of sensitized transplantation remains a clinical challenge particularly in parallel with prolonged cold ischemia time (PCI)-mediated injury. Our present study was to test the role of myeloid-derived suppressor cells (MDSCs) in mouse pre-sensitized transplantation. Our findings revealed that CD11b+Gr1(low) MDSC was shown to have strong suppressive activity.

View Article and Find Full Text PDF

The promise of islet cell transplantation cannot be fully realized in the absence of improvements in engraftment of resilient islets. The marginal mass of islets surviving the serial peritransplant insults may lead to exhaustion and thereby contribute to an unacceptably high rate of intermediate and long-term graft loss. Hence, we have studied the effects of treatment with alpha 1-antitrypsin (AAT) in a syngeneic nonautoimmune islet graft model.

View Article and Find Full Text PDF

Background: Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling.

Methodology And Principal Findings: To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-α) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues.

View Article and Find Full Text PDF

Background: To tilt the immunologic balance toward tolerance and away from rejection, non-human primate recipients of cardiac allografts were treated with interleukin (IL)-2/Fc, mutant (m) antagonist type mIL-15/Fc, and sirolimus.

Methods: Heterotopic heart transplants were performed on 8 fully mismatched cynomolgus macaques. An untreated control recipient rejected its graft by post-operative Day 6.

View Article and Find Full Text PDF

As a consequence of ischemia-reperfusion injury of whole organ transplants and hypoxia-anoxia of cell transplants, transplantation unavoidably triggers adverse, cytodestructive inflammation within the allograft. Interventions that dampen adverse inflammation may limit the extent and duration of this injury, and preserve tissue function. Moreover, these interventions should create a milieu that guides many donor-activated T cells into a tissue-protective phenotype, thus promoting graft acceptance or even tolerance.

View Article and Find Full Text PDF

Certain forms of inflammation of an allograft are highly detrimental to the induction and maintenance of transplant tolerance as they foster stable commitment to graft-destructive, not graft-protective, forms of T-cell immunity. Hence, a reduction in adverse tissue inflammation may prove crucial in facilitating the induction and maintenance of a long-lasting state of transplant tolerance.

View Article and Find Full Text PDF

Purpose Of Review: Inflammation of the allograft, occurring as a consequence of hypoxia and ischemia/reperfusion injury, adversely influences short-term and long-term transplant outcomes. Thus far, imbalance of tissue-protective Treg and tissue-destructive Th17 cells has been confirmed in a number of tissue-inflammatory states, including autoimmune disease. Hence, benefits of tilting Treg-Th17 equilibrium toward dominance of Tregs may promote transplant tolerance.

View Article and Find Full Text PDF

Here we present methods to longitudinally track islet allograft-infiltrating T cells in live mice by endoscopic confocal microscopy and to analyze circulating T cells by in vivo flow cytometry. We developed a new reporter mouse whose T cell subsets express distinct, 'color-coded' proteins enabling in vivo detection and identification of effector T cells (T(eff) cells) and discrimination between natural and induced regulatory T cells (nT(reg) and iT(reg) cells). Using these tools, we observed marked differences in the T cell response in recipients receiving tolerance-inducing therapy (CD154-specific monoclonal antibody plus rapamycin) compared to untreated controls.

View Article and Find Full Text PDF

Islet quality assessment methods for predicting diabetes reversal (DR) following transplantation are needed. We investigated two islet parameters, oxygen consumption rate (OCR) and OCR per DNA content, to predict transplantation outcome and explored the impact of islet quality on marginal islet mass for DR. Outcomes in immunosuppressed diabetic mice were evaluated by transplanting mixtures of healthy and purposely damaged rat islets for systematic variation of OCR/DNA over a wide range.

View Article and Find Full Text PDF

After activation by antigen/MHC (signal 1) and CD28-dependent co-stimulation (signal 2), resting CD4(+) T cells commit to one of a variety of functionally and molecularly defined phenotypes. Two long established CD4 phenotypes, Th1 and Th2 cells, have been regarded as terminally differentiated formats. Recently, two additional phenotypes, tissue-protective regulatory (Tregs) and tissue-destructive Th17 T cells, have also been discovered, and neither represents a terminally differentiated phenotype.

View Article and Find Full Text PDF

In short, manipulation of cytokine pathways shows promise as a mean to tilt the balance of immunity toward tolerance. Effective and regulatory T cells vary in their response to a variety of cytokines. In particular, the ability of certain cytokines, for example, IL-2, to provide vital survival signals to regulatory cells and to trigger death of effector T cells or impede IL-15 driven expansion of memory cells has spurred several trials.

View Article and Find Full Text PDF

Invasive insulitis is a destructive T cell-dependent autoimmune process directed against insulin-producing beta cells that is central to the pathogenesis of type 1 diabetes mellitus (T1DM) in humans and the clinically relevant nonobese diabetic (NOD) mouse model. Few therapies have succeeded in restoring long-term, drug-free euglycemia and immune tolerance to beta cells in overtly diabetic NOD mice, and none have demonstrably enabled enlargement of the functional beta cell mass. Recent studies have emphasized the impact of inflammatory cytokines on the commitment of antigen-activated T cells to various effector or regulatory T cell phenotypes and insulin resistance and defective insulin signaling.

View Article and Find Full Text PDF

Immune activation via TLRs is known to prevent transplantation tolerance in multiple animal models. To investigate the mechanisms underlying this barrier to tolerance induction, we used complementary murine models of skin and cardiac transplantation in which prolonged allograft acceptance is either spontaneous or pharmacologically induced with anti-CD154 mAb and rapamycin. In each model, we found that prolonged allograft survival requires the presence of natural CD4(+)Foxp3(+) T regulatory cells (Tregs), and that the TLR9 ligand CpG prevents graft acceptance both by interfering with natural Treg function and by promoting the differentiation of Th1 effector T cells in vivo.

View Article and Find Full Text PDF