Publications by authors named "Maria Koczor"

Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C4 plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear.

View Article and Find Full Text PDF

The bundle sheath provides a conduit linking veins and mesophyll cells. In the C3 plant Arabidopsis thaliana, it also plays important roles in oxidative stress and sulphur metabolism. However, the mechanisms responsible for the patterns of gene expression that underpin these metabolic specializations are poorly understood.

View Article and Find Full Text PDF

C4 photosynthesis is nature's most efficient answer to the dual activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the resulting loss of CO(2) by photorespiration. Gly decarboxylase (GDC) is the key component of photorespiratory CO(2) release in plants and is active in all photosynthetic tissues of C(3) plants, but only in the bundle sheath cells of C(4) plants. The restriction of GDC to the bundle sheath is assumed to be an essential and early step in the evolution of C(4) photosynthesis, leading to a photorespiratory CO(2) concentrating mechanism.

View Article and Find Full Text PDF

The mitochondrial Gly decarboxylase complex (GDC) is a key component of the photorespiratory pathway that occurs in all photosynthetically active tissues of C(3) plants but is restricted to bundle sheath cells in C(4) species. GDC is also required for general cellular C(1) metabolism. In the Asteracean C(4) species Flaveria trinervia, a single functional GLDP gene, GLDPA, encodes the P-subunit of GDC, a decarboxylating Gly dehydrogenase.

View Article and Find Full Text PDF

Glycine decarboxylase (GDC) plays an important role in the photorespiratory metabolism of plants. GDC is composed of four subunits (P, H, L, and T) with the P-subunit (GLDP) serving as the actual decarboxylating unit. In C(3) plants, GDC can be found in all photosynthetic cells, whereas in leaves of C(3)-C(4) intermediate and C(4) species its occurrence is restricted to bundle-sheath cells.

View Article and Find Full Text PDF

Background: The key enzymes of photosynthetic carbon assimilation in C4 plants have evolved independently several times from C3 isoforms that were present in the C3 ancestral species. The C4 isoform of phosphoenolpyruvate carboxylase (PEPC), the primary CO2-fixing enzyme of the C4 cycle, is specifically expressed at high levels in mesophyll cells of the leaves of C4 species. We are interested in understanding the molecular changes that are responsible for the evolution of this C4-characteristic PEPC expression pattern, and we are using the genus Flaveria (Asteraceae) as a model system.

View Article and Find Full Text PDF

C(4) photosynthesis presents a sophisticated integration of two complementary cell types, mesophyll and bundle sheath cells. It relies on the differential expression of the genes encoding the component enzymes and transporters of this pathway. The entry enzyme of C(4) photosynthesis, phosphoenolpyruvate carboxylase (PEPC), is found exclusively in mesophyll cells, and the expression of the corresponding gene is regulated at the transcriptional level.

View Article and Find Full Text PDF

C(4) photosynthesis depends on the strict compartmentalization of CO(2) assimilatory enzymes. cis-regulatory mechanisms are described that ensure mesophyll-specific expression of the gene encoding the C(4) isoform of phosphoenolpyruvate carboxylase (ppcA1) of the C(4) dicot Flaveria trinervia. To elucidate and understand the anatomy of the C(4) ppcA1 promoter, detailed promoter/reporter gene studies were performed in the closely related C(4) species F.

View Article and Find Full Text PDF