Prosthetic heart valve (PHV) replacement has increased the survival rate and quality of life for heart valve-diseased patients. However, PHV thrombosis remains a critical problem associated with these procedures. To better understand the PHV flow-related thrombosis problem, appropriate experimental models need to be developed.
View Article and Find Full Text PDFBackground: Carpal Tunnel Syndrome (CTS) is the most prevalent peripheral nerve entrapment disease. Its pathophysiology is multifactorial and defined as idiopathic in most cases. We present a rare case of CTS secondary to tumoral calcinosis and then searched the English literature to present the details of all published cases with this entity.
View Article and Find Full Text PDFComplex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts.
View Article and Find Full Text PDFThe use of three-dimensional (3D) models of human arteries, which are designed with the correct dimensions and anatomy, enables the proper modeling of various important processes in the cardiovascular system. Recently, although several biological studies have been performed using such 3D models of human arteries, they have not been applied to study vascular targeting. This paper presents a new method to fabricate real-sized, reconstructed human arterial models using a 3D printing technique, line them with human endothelial cells (ECs), and study particle targeting under physiological flow.
View Article and Find Full Text PDFLocal inflammation of the endothelium is associated with a plethora of cardiovascular diseases. Vascular-targeted carriers (VTCs) have been advocated to provide focal effective therapeutics to these disease sites. Here, we examine the design of functionalized nanoparticles (NPs) as VTCs that can specifically localize at an inflamed vessel wall under pathological levels of high shear stress, associated for example with clinical (or in vivo) conditions of vascular narrowing and arteriogenesis.
View Article and Find Full Text PDFJ Control Release
February 2020
Targeted drug delivery to diseased vasculature, such as atherosclerotic lesions, is a multistep process, which is based on the transport of drug carriers to a selected region and their deposition at the desired destination. Current modeling approaches, including microfluidics and animal models, fail to accurately simulate this multi-scale process in human arteries, where blood flow is dominant. Here we study particle deposition in endothelialized 3D reconstructed models of the human carotid bifurcation under physiological hemodyamic conditions.
View Article and Find Full Text PDFThe unlimited proliferative and differentiative capacities of embryonic stem cells (ESCs) are tightly regulated by their microenvironment. Local concentrations of soluble factors, cell-cell interactions and extracellular matrix signaling are just a few variables that influence ESC fate. A common method employed to induce ESC differentiation involves the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development.
View Article and Find Full Text PDFBiomed Microdevices
October 2010
As droplet-based microfluidic devices evolve, the demand for simple-to-fabricate droplet manipulation modules increases. Of these modules, droplet sorting has drawn much attention due to its ability not only to enrich, but also to selectively isolate droplet subpopulations of interest. In this paper, we present an innovative piezoelectric-driven droplet sorter that is simple to fabricate, reproducible and robust, which provides extensive control over spatio-temporal droplet pattern.
View Article and Find Full Text PDFDroplet based microfluidic systems have been shown to be most valuable in biology and chemistry research. However droplet modulation and manipulation requires still further improvement in order to make this technology feasible particularly for biological applications. On demand generation of droplets and droplet synchronization, which is crucial for coalescence, remain largely unanswered.
View Article and Find Full Text PDFMicrofluidic bioreactors have been shown valuable for various cellular applications. The use of micro-wells/grooves bioreactors, in which micro-topographical features are used to protect sensitive cells from the detrimental effects of fluidic shear stress, is a promising approach to culture sensitive cells in these perfusion microsystems. However, such devices exhibit substantially different fluid dynamics and mass transport characteristics compared to conventional planar microchannel reactors.
View Article and Find Full Text PDF