Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns.
View Article and Find Full Text PDFIntroduction: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy.
View Article and Find Full Text PDFPatients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum.
View Article and Find Full Text PDFThe overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia.
View Article and Find Full Text PDFBackground: Recurrent or refractory solid and central nervous system (CNS) tumours in paediatric patients have limited treatment options and carry a poor prognosis. The EnGeneIC Dream Vector (EDV) is a novel nanocell designed to deliver cytotoxic medication directly to the tumour. The epidermal growth factor receptor is expressed in several CNS and solid tumours and is the target for bispecific antibodies attached to the EDV.
View Article and Find Full Text PDFHigh-risk neuroblastoma has poor survival due to treatment failure and off-target side effects of therapy. Small molecule inhibitors have shown therapeutic efficacy at targeting oncogenic cell cycle dysregulators, such as polo-like kinase 1 (PLK1). However, their clinical success is limited by a lack of efficacy and specificity, causing off-target toxicity.
View Article and Find Full Text PDFPhiladelphia-like acute lymphoblastic leukemia (Ph-like ALL) is an aggressive B-ALL malignancy associated with high rates of relapse and inferior survival rate. While targeted treatments against the cell surface proteins CD22 or CD19 have been transformative in the treatment of refractory B-ALL, patients may relapse due to antigen loss, necessitating targeting alternative antigens. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in half of Ph-like ALL cases conferring chemoresistance and enhancement of leukemia cell survival.
View Article and Find Full Text PDFIn vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited.
View Article and Find Full Text PDFHigh-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells.
View Article and Find Full Text PDFThe prognosis of brain cancers such as glioblastoma remains poor despite numerous advancements in the field of neuro-oncology. The presence of the blood brain barrier (BBB) along with the highly invasive and aggressive nature of glioblastoma presents a difficult challenge for developing effective therapies. Temozolomide (TMZ) is a first line agent used in the clinic for glioblastoma and it has been useful in increasing patient survival rates.
View Article and Find Full Text PDFSynthetic hydrogels have been used widely as extracellular matrix (ECM) mimics due to the ability to control and mimic physical and biochemical cues observed in natural ECM proteins such as collagen, laminin, and fibronectin. Most synthetic hydrogels are formed covalent bonding resulting in slow gelation which is incompatible with drop-on-demand 3D bioprinting of cells and injectable hydrogels for therapeutic delivery. Herein, we developed an electrostatically crosslinked PEG-based hydrogel system for creating high-throughput 3D in vitro models using synthetic hydrogels to mimic the ECM cancer environment.
View Article and Find Full Text PDFHydrogels that serve as native extracellular matrix (ECM) mimics are typically naturally derived hydrogels that are physically cross-linked ionic interactions. This means rapid gelation of synthetic polymers, which give control over the chemical and physical cues in hydrogel formation. Herein, we combine the best of both systems by developing a synthetic hydrogel with ionic cross-linking of block copolyelectrolytes to rapidly create hydrogels.
View Article and Find Full Text PDFUnderstanding the underlying mechanisms of migration and metastasis is a key focus of cancer research. There is an urgent need to develop 3D tumor models that can mimic physiological cell-cell and cell-extracellular matrix interactions, with high reproducibility and that are suitable for high throughput (HTP) drug screening. Here, we developed a HTP 3D bioprinted migration model using a bespoke drop-on-demand bioprinting platform.
View Article and Find Full Text PDFNon-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. βIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC.
View Article and Find Full Text PDFTargeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells.
View Article and Find Full Text PDFThe tumor microenvironment is highly complex owing to its heterogeneous composition and dynamic nature. This makes tumors difficult to replicate using traditional 2D cell culture models that are frequently used for studying tumor biology and drug screening. This often leads to poor translation of results between in vitro and in vivo and is reflected in the extremely low success rates of new candidate drugs delivered to the clinic.
View Article and Find Full Text PDFDespite significant advances in research, the prognosis for both primary and secondary brain cancers remains poor. The blood-brain barrier (BBB) is a complex and unique semi-permeable membrane that serves as a protective structure to maintain homeostasis within the brain. However, it presents a significant challenge for the delivery of therapeutics into the brain and tumor.
View Article and Find Full Text PDFThe advent of massively parallel sequencing revealed extensive transcription beyond protein-coding genes, identifying tens of thousands of long noncoding RNAs (lncRNAs). Selected functional examples raised the possibility that lncRNAs, as a class, may maintain broad regulatory roles. Expression of lncRNAs is strongly linked with adjacent protein-coding gene expression, suggesting potential -regulatory functions.
View Article and Find Full Text PDFMicrotubule proteins form a dynamic component of the cytoskeleton, and play key roles in cellular processes, such as vesicular transport, cell motility and mitosis. Expression of microtubule proteins are often dysregulated in cancer. In particular, the microtubule protein βIII-tubulin, encoded by the gene, is aberrantly expressed in a range of epithelial tumours and is associated with drug resistance and aggressive disease.
View Article and Find Full Text PDFNeuroblastoma is a highly metastatic childhood cancer for which studies indicate an association between protein glycosylation and tumor behavior. However, there is a lack of detailed glycome analysis on neuroblastoma cells that have varying metastatic potential. Furthermore, the impact of the cell culturing mode, i.
View Article and Find Full Text PDFβIII-tubulin is a neuronal microtubule protein that is aberrantly expressed in epithelial cancers. The microtubule network is implicated in regulating the architecture and dynamics of the mitochondrial network, although the isotype-specific role for β-tubulin proteins that constitute this microtubule network remains unclear. High-resolution electron microscopy revealed that manipulation of βIII-tubulin expression levels impacts the volume and shape of mitochondria.
View Article and Find Full Text PDFA key challenge in nanomedicine stems from the continued need for a systematic understanding of the delivery of nanoparticles in live cells. Complexities in delivery are often influenced by the biophysical characteristics of nanoparticles, where even subtle changes to nanoparticle designs can alter cellular uptake, transport and activity. Close examination of these processes, especially with imaging, offers important insights that can aid in future nanoparticle design or translation.
View Article and Find Full Text PDFPatients whose leukemias harbor a rearrangement of the (/) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target -rearranged (KMT2A-r) leukemia cells.
View Article and Find Full Text PDF